Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers grow cyberforests to predict climate change

25.02.2016

Three weeks from seed to simulated forest

It can take Mother Nature 1,000 years to grow a forest. But Nikolay Strigul, assistant professor of mathematics and statistics at Washington State University Vancouver, can grow one on a computer in three weeks.


Real trees are on the right. Trees on the left were made using imaging data collected by aerial drones and the LES forest simulator.

Credit: Washington State University

He and Jean Lienard, a mathematics postdoctoral researcher, created the first computer simulation that grows realistic forests down to the branches, leaves and roots of individual trees. They are using the simulation, detailed in a new paper in Royal Society Open Science, to determine how drought, warmer weather, more frequent wildfires and other climate-related changes will affect forests across North America.

They have already used the computer model to predict increases in fire rates and plant growth in Quebec hardwood forests due to rising CO2 levels and warmer temperatures.

"We call our model LES after the Russian word for forest," said Strigul, who grew up in Russia and came to the U.S. In 2001. "It is a tool that forest managers can use to create 3D representations of their own forests and simulate what will happen to them in the future."

Intricate detail, adjustable scale

LES uses recent advances in computing power to grow 100×100-meter stands of drought and shade tolerant trees that can then be scaled up to actual forest size.

The model is unique in several ways. First, it is the only forest-growing simulator that creates intricate root systems and canopy structures for each tree. Previous forest simulators could either grow one or the other.

Below ground, the roots of different trees in LES compete for water resources in each pixel of the model. Above ground, the leaves in each tree's canopy compete for sunlight in a similar fashion. Over time, the trees' canopies change shape to expose their leaves to more sunlight.

The researchers use a combination of data from the U.S. Department of Agriculture's Forest Inventory and Analysis Program and other forestry databases, as well as aerial reconnaissance from UAVs, to customize their model to particular forests. The simulator lets scientists project how changing climate conditions will impact forests over thousands of years.

"In cooperation with the U.S. Forest Service, we developed a method where we fly drones around a forest and take pictures and gather other imaging information," Lienard said. "We use this data to develop 3D models that have real distributions of space and ecological features.

Details of our drone work were recently published in PLOS One and Measurement Science and Technology," he said. "It is a method that can be adapted for practically any forest."

The effects of a changing climate

For large parts of North America, climate change is leading to more frequent drought, warmer weather and other varying natural conditions. What effect this will have on forests and their ability to recover from dynamic disturbances like wildfires or clear-cutting is difficult to determine. Scientists know relatively little about the mechanics that drive forest recovery. The process can take several decades to document and involves trees with diverse physiological characteristics competing for resources over large and ecologically varied areas.

Strigul and Lienard plan to use LES to help forest managers determine which species of trees and other ecological factors are necessary for forests to reestablish themselves after being destroyed by wildfires and other disturbances.

"Drive an hour east along the Columbia River from Vancouver and you will notice a complete transition from very dense forests to savanna and then to desert," Strigul said. "The fear is that drier conditions in the future will prevent forests in places like Washington from reestablishing themselves after a clear-cut or wildfire. This could lead to increasing amounts of once-forested areas converted to desert.

"Our model can help predict if forests are at risk of desertification or other climate change-related processes and identify what can be done to conserve these systems," he said.

Media Contact

Nikolay Strigul
nick.strigul@wsu.edu
201-952-4260

 @WSUNews

http://www.wsu.edu 

Nikolay Strigul | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>