Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Focus on Dairy’s Carbon Footprint

03.06.2013
Life-cycle analysis identifies opportunities for emissions reduction

Researchers at the University of Arkansas are attempting to help the U.S. dairy industry decrease its carbon footprint as concentrations of carbon dioxide in the Earth’s atmosphere reach record levels.

In 2007, Americans consumed approximately 17.4 million metric tons of fluid milk – milk consumed as a drink or with cereal, rather than milk used in dairy products such as cheese, yogurt and ice cream. The dairy industry has set a goal of 25 percent reduction in greenhouse gas emissions by 2020.

The U of A researchers’ “cradle-to-grave” life-cycle analysis of milk will provide guidance for producers, processors and others in the dairy supply chain and will help these stakeholders reduce their environmental impact while maintaining long-term viability.

“Based in part on growing consumer awareness of sustainability issues in our food supply chain, the U.S. dairy industry is working to further improve the environmental performance of its production processes and supply chain in a way that is also economically sustainable,” said Greg Thoma, professor of chemical engineering. “Our analysis provides a documented baseline for their improvement efforts. It is a source for understanding the factors that influence environmental impact.”

Thoma and an interdisciplinary team of U of A researchers looked at all facets and stages of milk production, from the fertilizer used to grow the animal’s feed to waste disposal of packaging after consumer use. Specifically, their life-cycle analysis focused on seven areas:
-- farm production and processes
-- farm-to-processor transportation
-- processor operations, packaging and distribution
-- retail operations
-- consumer transportation and storage
-- post-consumer waste management
-- overall supply-chain loss and waste
The researchers found that for every kilogram of milk consumed in the United States per year, 2.05 kilograms of greenhouse gases, on average, are emitted over the entire supply chain to produce, process and distribute that milk. This is equivalent to approximately 17.4 pounds per gallon. The greenhouse gases were measured as carbon dioxide equivalents and included methane, refrigerants and other gases that trap radiation. The largest contributors were feed production, enteric methane – gas emitted by the animal itself – and manure management.

The researchers identified many areas where the industry can reduce impact within feed and milk production, processing and distribution, retail and the supply chain. They focused on farms, where processes for feed production, handling of enteric methane and manure management varied greatly and therefore represent the greatest opportunities for achieving significant reductions.

The researchers suggested widespread nutrient management strategies that link inorganic fertilizer use with the application of manure for crop production. They recommended dry lot and solid storage systems as preferred management strategies, rather than anaerobic lagoons and deep bedding. Methane digesters, which biologically convert manure to methane and capture it as an energy source, should be a high priority for larger farm operations, Thoma said.

“Methane digesters have great potential as a way to capture and utilize methane, which is natural gas, that is otherwise lost to the atmosphere,” he said.

At the processor and distribution level, greater emphasis on truck fleet-fuel usage and consumption of electricity will reduce emissions, the researchers said. Implementing standard energy-efficiency practices focused on refrigeration and compressed-air systems, motors and lighting will also lead to reduction. Likewise, processor plant fuel reductions can be achieved through improved steam systems and continued energy-efficiency improvements in other operating practices.

With packaging, emissions reductions could come from improved bottle designs resulting in less material use. Specifically, changing the bottle cap manufacturing process from injection molding to thermoforming may lower environmental impact. Similar suggestions have already been made for yogurt packaging and containers.

Finally, the researchers recommended a careful examination of trucking transport distances to realize greater optimization and efficiency of routes. They also suggested transport refrigeration systems that use fewer refrigerants.

The U of A researchers – Rick Ulrich, professor of chemical engineering; Darin Nutter, professor of mechanical engineering; Jennie Popp, professor of agricultural economics and agribusiness; and Marty Matlock, professor of biological and agricultural engineering, in addition to Thoma – partnered with researchers at Michigan Technological University. Their study was published as a special issue, “Carbon and Water Footprint of U.S. Milk, From Farm to Table,” of the International Dairy Journal in April.

Thoma is holder of the Bates Teaching Professorship in Chemical Engineering. Ulrich is holder of the Louis Owen Professorship in Chemical Engineering.

CONTACTS:
Greg Thoma, professor, chemical engineering
College of Engineering
479-575-7374, gthoma@uark.edu
Marty Matlock, professor, biological and agricultural engineering
College of Engineering
479-575-2849, mmatlock@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu
Follow University of Arkansas research on Twitter @UArkResearch

Matt McGowan | Newswise
Further information:
http://www.uark.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>