Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Focus on Dairy’s Carbon Footprint

03.06.2013
Life-cycle analysis identifies opportunities for emissions reduction

Researchers at the University of Arkansas are attempting to help the U.S. dairy industry decrease its carbon footprint as concentrations of carbon dioxide in the Earth’s atmosphere reach record levels.

In 2007, Americans consumed approximately 17.4 million metric tons of fluid milk – milk consumed as a drink or with cereal, rather than milk used in dairy products such as cheese, yogurt and ice cream. The dairy industry has set a goal of 25 percent reduction in greenhouse gas emissions by 2020.

The U of A researchers’ “cradle-to-grave” life-cycle analysis of milk will provide guidance for producers, processors and others in the dairy supply chain and will help these stakeholders reduce their environmental impact while maintaining long-term viability.

“Based in part on growing consumer awareness of sustainability issues in our food supply chain, the U.S. dairy industry is working to further improve the environmental performance of its production processes and supply chain in a way that is also economically sustainable,” said Greg Thoma, professor of chemical engineering. “Our analysis provides a documented baseline for their improvement efforts. It is a source for understanding the factors that influence environmental impact.”

Thoma and an interdisciplinary team of U of A researchers looked at all facets and stages of milk production, from the fertilizer used to grow the animal’s feed to waste disposal of packaging after consumer use. Specifically, their life-cycle analysis focused on seven areas:
-- farm production and processes
-- farm-to-processor transportation
-- processor operations, packaging and distribution
-- retail operations
-- consumer transportation and storage
-- post-consumer waste management
-- overall supply-chain loss and waste
The researchers found that for every kilogram of milk consumed in the United States per year, 2.05 kilograms of greenhouse gases, on average, are emitted over the entire supply chain to produce, process and distribute that milk. This is equivalent to approximately 17.4 pounds per gallon. The greenhouse gases were measured as carbon dioxide equivalents and included methane, refrigerants and other gases that trap radiation. The largest contributors were feed production, enteric methane – gas emitted by the animal itself – and manure management.

The researchers identified many areas where the industry can reduce impact within feed and milk production, processing and distribution, retail and the supply chain. They focused on farms, where processes for feed production, handling of enteric methane and manure management varied greatly and therefore represent the greatest opportunities for achieving significant reductions.

The researchers suggested widespread nutrient management strategies that link inorganic fertilizer use with the application of manure for crop production. They recommended dry lot and solid storage systems as preferred management strategies, rather than anaerobic lagoons and deep bedding. Methane digesters, which biologically convert manure to methane and capture it as an energy source, should be a high priority for larger farm operations, Thoma said.

“Methane digesters have great potential as a way to capture and utilize methane, which is natural gas, that is otherwise lost to the atmosphere,” he said.

At the processor and distribution level, greater emphasis on truck fleet-fuel usage and consumption of electricity will reduce emissions, the researchers said. Implementing standard energy-efficiency practices focused on refrigeration and compressed-air systems, motors and lighting will also lead to reduction. Likewise, processor plant fuel reductions can be achieved through improved steam systems and continued energy-efficiency improvements in other operating practices.

With packaging, emissions reductions could come from improved bottle designs resulting in less material use. Specifically, changing the bottle cap manufacturing process from injection molding to thermoforming may lower environmental impact. Similar suggestions have already been made for yogurt packaging and containers.

Finally, the researchers recommended a careful examination of trucking transport distances to realize greater optimization and efficiency of routes. They also suggested transport refrigeration systems that use fewer refrigerants.

The U of A researchers – Rick Ulrich, professor of chemical engineering; Darin Nutter, professor of mechanical engineering; Jennie Popp, professor of agricultural economics and agribusiness; and Marty Matlock, professor of biological and agricultural engineering, in addition to Thoma – partnered with researchers at Michigan Technological University. Their study was published as a special issue, “Carbon and Water Footprint of U.S. Milk, From Farm to Table,” of the International Dairy Journal in April.

Thoma is holder of the Bates Teaching Professorship in Chemical Engineering. Ulrich is holder of the Louis Owen Professorship in Chemical Engineering.

CONTACTS:
Greg Thoma, professor, chemical engineering
College of Engineering
479-575-7374, gthoma@uark.edu
Marty Matlock, professor, biological and agricultural engineering
College of Engineering
479-575-2849, mmatlock@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu
Follow University of Arkansas research on Twitter @UArkResearch

Matt McGowan | Newswise
Further information:
http://www.uark.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>