Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Focus on Dairy’s Carbon Footprint

Life-cycle analysis identifies opportunities for emissions reduction

Researchers at the University of Arkansas are attempting to help the U.S. dairy industry decrease its carbon footprint as concentrations of carbon dioxide in the Earth’s atmosphere reach record levels.

In 2007, Americans consumed approximately 17.4 million metric tons of fluid milk – milk consumed as a drink or with cereal, rather than milk used in dairy products such as cheese, yogurt and ice cream. The dairy industry has set a goal of 25 percent reduction in greenhouse gas emissions by 2020.

The U of A researchers’ “cradle-to-grave” life-cycle analysis of milk will provide guidance for producers, processors and others in the dairy supply chain and will help these stakeholders reduce their environmental impact while maintaining long-term viability.

“Based in part on growing consumer awareness of sustainability issues in our food supply chain, the U.S. dairy industry is working to further improve the environmental performance of its production processes and supply chain in a way that is also economically sustainable,” said Greg Thoma, professor of chemical engineering. “Our analysis provides a documented baseline for their improvement efforts. It is a source for understanding the factors that influence environmental impact.”

Thoma and an interdisciplinary team of U of A researchers looked at all facets and stages of milk production, from the fertilizer used to grow the animal’s feed to waste disposal of packaging after consumer use. Specifically, their life-cycle analysis focused on seven areas:
-- farm production and processes
-- farm-to-processor transportation
-- processor operations, packaging and distribution
-- retail operations
-- consumer transportation and storage
-- post-consumer waste management
-- overall supply-chain loss and waste
The researchers found that for every kilogram of milk consumed in the United States per year, 2.05 kilograms of greenhouse gases, on average, are emitted over the entire supply chain to produce, process and distribute that milk. This is equivalent to approximately 17.4 pounds per gallon. The greenhouse gases were measured as carbon dioxide equivalents and included methane, refrigerants and other gases that trap radiation. The largest contributors were feed production, enteric methane – gas emitted by the animal itself – and manure management.

The researchers identified many areas where the industry can reduce impact within feed and milk production, processing and distribution, retail and the supply chain. They focused on farms, where processes for feed production, handling of enteric methane and manure management varied greatly and therefore represent the greatest opportunities for achieving significant reductions.

The researchers suggested widespread nutrient management strategies that link inorganic fertilizer use with the application of manure for crop production. They recommended dry lot and solid storage systems as preferred management strategies, rather than anaerobic lagoons and deep bedding. Methane digesters, which biologically convert manure to methane and capture it as an energy source, should be a high priority for larger farm operations, Thoma said.

“Methane digesters have great potential as a way to capture and utilize methane, which is natural gas, that is otherwise lost to the atmosphere,” he said.

At the processor and distribution level, greater emphasis on truck fleet-fuel usage and consumption of electricity will reduce emissions, the researchers said. Implementing standard energy-efficiency practices focused on refrigeration and compressed-air systems, motors and lighting will also lead to reduction. Likewise, processor plant fuel reductions can be achieved through improved steam systems and continued energy-efficiency improvements in other operating practices.

With packaging, emissions reductions could come from improved bottle designs resulting in less material use. Specifically, changing the bottle cap manufacturing process from injection molding to thermoforming may lower environmental impact. Similar suggestions have already been made for yogurt packaging and containers.

Finally, the researchers recommended a careful examination of trucking transport distances to realize greater optimization and efficiency of routes. They also suggested transport refrigeration systems that use fewer refrigerants.

The U of A researchers – Rick Ulrich, professor of chemical engineering; Darin Nutter, professor of mechanical engineering; Jennie Popp, professor of agricultural economics and agribusiness; and Marty Matlock, professor of biological and agricultural engineering, in addition to Thoma – partnered with researchers at Michigan Technological University. Their study was published as a special issue, “Carbon and Water Footprint of U.S. Milk, From Farm to Table,” of the International Dairy Journal in April.

Thoma is holder of the Bates Teaching Professorship in Chemical Engineering. Ulrich is holder of the Louis Owen Professorship in Chemical Engineering.

Greg Thoma, professor, chemical engineering
College of Engineering
Marty Matlock, professor, biological and agricultural engineering
College of Engineering
Matt McGowan, science and research communications officer
University Relations
Follow University of Arkansas research on Twitter @UArkResearch

Matt McGowan | Newswise
Further information:

More articles from Agricultural and Forestry Science:

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
21.03.2018 | Technische Universität Dresden

nachricht Earlier flowering of modern winter wheat cultivars
20.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>