Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers fly a kite for manure recycling

01.12.2008
Researchers at North Wyke Research, and Lancaster and Exeter universities, have come up with an advice system to help farmers recycle manure safely and avoid polluting watercourses.

Organisms such as E coli may be present in animal manure and can pose a serious threat to human health. Irrigated crops are sometimes contaminated, shellfisheries can be vulnerable and bathing waters may be under threat, with subsequent effects for tourism.

This is particularly true in South West England, with its dairy industry and large numbers of summer visitors, and where some public beaches have failed to meet the requirements of the European Water Framework Directive. These are some of the reasons that led the team to focus on the Taw catchment of North Devon as a study area in this project, which is part of the UK Research Councils’ Rural Economy and Land Use Programme.

The interdisciplinary team of natural and social scientists, assessed the risk of water contamination at 77 farms, taking into account factors such as grazing
livestock and topography, and surveyed farmers to assess their knowledge about risk and find out how they managed manure on the farm.

They also monitored microbial water quality at fixed locations over several seasons.

The project has identified four factors that affect the level of risk:

•Accumulated microbial burden to land (eg how manure is applied and deposited, stocking density)

•Landscape transfer potential (eg the topography of the land, whether there are slopes, streams and so on)

•Infrastructure (eg how the manure is stored, whether there is hard standing)

•Social and economic obstacles (eg whether the farmer has had training about risk, whether he can afford to invest in infrastructure)

The team then constructed a model framework that shows the levels of risk in these four areas, expressed graphically as a “kite” shape. The colour shows the overall level of risk from green representing “low risk” to red representing “high risk.” The shape demonstrates where risk is highest. This provides a useful tool for farm advisers working with farmers, as reducing the risk reduces the shape of the kite.

Dr Dave Chadwick from North Wyke who led the project explained: “The project covered a lot of areas, including public perception of the risks involved, so it was very wide-ranging.

“Our examination of microbial evidence threw up some unexpected results. We found that untreated sewage from the farmhouse was a significant factor in the total microbial load in quite a few cases, and how and when manure is applied also has an effect. Some practices may have unintended consequences.

“Injecting slurry, for example, does reduce ammonia emissions, which is the intention, but also favours survival of organisms.

“So how can an individual farmer reduce the risk of polluting watercourses? The kite model is designed to help. It shows whether the farm is high risk, and how the farmer can apply his efforts most effectively and at least cost. So we expect it to be a particularly useful tool for farm advisers.”

The Rural Economy and Land Use Programme’s Policy and Practice Note no 4 “Safe recycling of livestock manures” may be downloaded from http://www.relu.ac.uk/news/policy%20and%20practice%20notes/Chadwick%20PP4.pdf or hard copies obtained from relu@ncl.ac.uk.

Anne Liddon | alfa
Further information:
http://www.ncl.ac.uk
http://www.relu.ac.uk/news/researchers%20fly%20kite%20for%20manure%20recycling%20with%20header.doc

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>