Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Primer to Plant Defense System

07.04.2009
By identifying a novel compound that primes a plant’s immune system, researchers at Oak Ridge National Laboratory and the University of Chicago may be on a path to developing disease-resistant plants.

In a paper published in Science, a team that includes Tim Tschaplinski of the Department of Energy’s ORNL reports that azelaic acid has a role in priming the immunity response in Arabidopsis, a small flowering plant related to cabbage and mustard.

This plant, commonly known as thale cress or mouse-ear cress, is widely used as a model organism for studying higher plants.

While Tschaplinski acknowledged that this field is in its infancy and involves a very complex network of responses, he and co-authors are excited about what may lie ahead.

“Long term, this discovery may prove useful for preventing diseases in crops and other plants, and perhaps for generating plants that are more disease-resistant in the first place,” said Tschaplinski, a member of ORNL’s Environmental Sciences Division.

The discovery was actually made when Tschaplinski kept noticing a persistent mass spectral signature that occurred soon after Arabidopsis plants were exposed to a bacterial pathogen. The signal matched a pattern in a database of mass spectral signatures of Arabidopsis metabolites and prompted Tschaplinski to have a conversation with the University of Chicago’s Jean Greenberg and postdoctoral scholar Ho Won Jung. Their discussion led to some additional research and this paper, titled “Priming in Systemic Plant Immunity.”

Among key findings was that plants can boost their overall immunity to infection once they have a local exposure to certain pathogenic microbes. This occurs through a series of steps, beginning with a primary infection that causes the plant to induce defenses to contain the spread and growth of the pathogen. The infection causes the plant to produce more azelaic acid, which stimulates the production of AZ11, a protein that the researchers found to be essential for the increased systemic plant immunity.

Azelaic acid moves throughout the stem and leaves and bolsters the plant’s immune system so it can respond quicker and more effectively to diseases compared to naïve plants, according to the researchers. Through this process, plants accumulate very high levels of the defense signal salicylic acid, and this helps inhibit the progression of secondary infections.

“With respect to future science, a number of other novel signatures are clearly evident and can be pursued as a component of the plant-microbe scientific focus area if that is a route we decide to go,” Tschaplinski said.

In the meantime, the authors note that, “The identification of novel systemic acquired resistance components may be useful for plant protection and provides new insight into how some interactions trigger systemic plant immunity.”

Other authors are Lin Wang and Jane Glazebrook of the University of Minnesota. Funding for the research, led by Greenberg, was provided by DOE’s Office of Science and the National Science Foundation.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>