Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher grows roots on upper part of plant

31.10.2008
The molecular cell biologist Pankaj Dhonukshe from Utrecht University has succeeded in growing roots on plants at places where normally leaves would grow.

This important step in plant modification can be highly beneficial for improving crop yields and efficiency in the agricultural sector. This research was largely carried out in collaboration between Utrecht University (The Netherlands) and Ghent University (Belgium) with help from scientists in Japan, USA and Switzerland. The results of this research appeared as an advance online publication of the weekly science journal Nature on 26 October 2008.

The plant hormone auxin plays a crucial role in coordination of stem cells and organ formation in plants. It promotes the formation of roots from stem cells and coordinates the growth of leaves and fruits. Auxin is produced mainly in young leaves, or shoots, and is then transported from one cell to the next towards the basal region of plant ultimately leading towards root formation.

Roots above ground
Pankaj Dhonukshe discovered a molecular switch to alter the auxin transport. By turning on the switch, Dhonukshe was able to reduce the extent of auxin transport towards the roots. The hormone then began to accumulate at the places in the young leaves where it is produced and roots began to emerge here where normally leaves would grow.
Increased yields
These results are an important step in our understanding of the way plants grow and create novel future possibilities to modify the positioning of various plant organs such as roots, fruits and leaves. This specific manipulation of plant architecture promises to enhance yield-traits and crop harvesting. Molecular switches are particularly interesting for influencing plant forms, because utilization of traditional plant refinement approaches has certain limitations. The Utrecht research group is currently examining further interesting possibilities in this area.
Collaborative Research
Dhonukshe carried out the developmental biology research at Utrecht University, and the cellular biology research in cooperation with Ghent University.
Life Sciences and Biocomplexity
Utrecht University has organised its top-level research into fifteen focus areas, which are intended to promote high-quality research and contribute to solving major problems in society. The study described above falls under the category ‘Life Sciences and Biocomplexity’, in which research is being carried out into all the processes in the cell from the molecular scale to the creation of multi-celled organisms and the interaction among cells. Genomics and proteomics form an important part of this area.

Peter van der Wilt | alfa
Further information:
http://www.uu.nl/EN/research/focusareas
http://www.uu.nl

Further reports about: Agricultural Biocomplexity crop yields plant hormone stem cells

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>