Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research contains solutions to common pear disease

29.12.2010
Scientists recommend effective treatment for spraying pear trees

Diseases caused by a species of fungus called Phytophthora syringae are responsible for significant economic losses on a wide range of plants, including pear.

In the Pacific Northwest region of the United States, disease occurs during the winter in nursery stock, especially on trees that are harvested and stored in coolers or in outdoor sawdust beds. Recent field observations by growers suggest that increased nitrogen content in nursery trees resulting from foliar sprays with urea in the autumn increases tree susceptibility to infection by Phytophthora syringae.

The results of new research suggest the relationship between tree susceptibility to P. syringae and tree nitrogen concentration may be specific to the form of nitrogen, delivery method, or timing of nitrogen applications.

Researchers from Oregon State University's Department of Horticulture and the USDA-Agricultural Research Service published a study in HortTechnology that contains new answers for nursery operators. The experiments investigated the effects of soil nitrogen (N) availability and spraying pear trees with combinations of urea, chelated copper ethylenediaminetetraacetic acid (CuEDTA), and phosphonate-containing fungicides on stem N concentration and susceptibility to infection by P. syringae.

Experimental results showed that spraying trees with urea in the autumn increased concentrations of nitrogen and amino acids in stems and had no significant effect on tree susceptibility when stems were inoculated with P. syringae before or after urea sprays. Spraying with CuEDTA decreased stem nitrogen concentrations and had no significant influence on tree susceptibility to P. syringae when stems were inoculated before or after CuEDTA sprays, while spraying with fungicides containing fosetyl-aluminum in October or November decreased tree susceptibility to P. syringae. The effects of fungicides containing fosetyl-aluminum on susceptibility were similar regardless of whether trees were sprayed or not with urea or CuEDTA. According to the report, the results suggest that these fungicides can be used in combination with urea or CuEDTA sprays for reducing disease severity caused by P. syringae without impacting growers' objective of increasing tree N content with urea or enhancing early defoliation with CuEDTA.

The authors concluded that spraying trees with a combination of urea and CuEDTA with phosphonate- containing fungicides in early autumn can be of benefit for early harvesting and preventing the contamination and/or infection of P. syringae in the field or storage. "Spraying pear trees with a combination of urea and CuEDTA after terminal buds have set in early autumn can benefit nursery operators because the pathogen is less active in warm dry environments and the trees are better able to heal wounds caused by defoliation or chemical treatments", they noted.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/20/2/331

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>