Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows forest trees remember their roots

12.07.2011
When it comes to how they respond to the environment, trees may not be that different from humans.

Recent studies showed that even genetically identical human twins can have a different chance of getting a disease. This is because each twin has distinct personal experiences through their lifetime.

It turns out that the same is likely true for forest trees as well, according to new research from the University of Toronto Scarborough (UTSC).

"The findings were really quite stunning," says Malcolm Campbell, a biologist and lead author of the study. "People have been talking about a so-called "nursery effect" for a long time."

The study looked at the theory that trees and other plants, even when they were genetically identical, grew differently and responded to stress differently depending on the nursery that the plants were obtained from. Campbell says the research findings not only provide a strong affirmation of this effect, but also reveal insight on a molecular level. "Our results show that there is a form of molecular 'memory' in trees where a tree's previous personal experience influences how it responds to the environment."

In the new study, Campbell's graduate student Sherosha Raj used genetically identical poplar trees that had been grown in two different regions of Canada. These stem cuttings were then used to regrow the trees under identical climate-controlled conditions in Toronto. Raj subjected half of the trees to drought conditions while the remaining trees were well watered.

Since the trees were regrown under identical conditions, Campbell and his research group predicted all the specimens would respond to drought in the same manner, regardless of where they had come from. Remarkably, genetically identical specimens of two poplar varieties responded differently to the drought treatment depending on their place of origin.

Campbell's research group also showed that this difference occurred at the most fundamental level – the one of gene activity. Even though the specimens were all genetically identical, trees that had been obtained from Alberta used a different set of genes to respond to drought than the ones that had been obtained from Saskatchewan.

The findings of this study are relevant to foresters and gardeners in highlighting the importance of the nursery source for trees and other plants, which can determine how the plant will grow and resist stress in a forest or the garden. Additionally, the "memory" of previous experience discovered in this study could also help determine plant survival in response to changes in climate, or other environmental stresses like diseases or pests.

Dr. Campbell's research team included co-first author Dr. Katharina Bräutigam, Erin Hamnishi and Dr. Olivia Wilkins, all of the University of Toronto. The work was done in collaboration with colleagues at the University of British Columbia, Simon Fraser University, and the University of Alberta.

The research was supported by Natural Sciences and Engineering Research Council of Canada competitive research funds, and in kind contributions from Alberta Pacific Forest Industries, and Agriculture and Agrifood Canada.

The study appears in this week's issue of PNAS: The Proceedings of the National Academy of Sciences.

Karen Ho | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>