Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows forest trees remember their roots

12.07.2011
When it comes to how they respond to the environment, trees may not be that different from humans.

Recent studies showed that even genetically identical human twins can have a different chance of getting a disease. This is because each twin has distinct personal experiences through their lifetime.

It turns out that the same is likely true for forest trees as well, according to new research from the University of Toronto Scarborough (UTSC).

"The findings were really quite stunning," says Malcolm Campbell, a biologist and lead author of the study. "People have been talking about a so-called "nursery effect" for a long time."

The study looked at the theory that trees and other plants, even when they were genetically identical, grew differently and responded to stress differently depending on the nursery that the plants were obtained from. Campbell says the research findings not only provide a strong affirmation of this effect, but also reveal insight on a molecular level. "Our results show that there is a form of molecular 'memory' in trees where a tree's previous personal experience influences how it responds to the environment."

In the new study, Campbell's graduate student Sherosha Raj used genetically identical poplar trees that had been grown in two different regions of Canada. These stem cuttings were then used to regrow the trees under identical climate-controlled conditions in Toronto. Raj subjected half of the trees to drought conditions while the remaining trees were well watered.

Since the trees were regrown under identical conditions, Campbell and his research group predicted all the specimens would respond to drought in the same manner, regardless of where they had come from. Remarkably, genetically identical specimens of two poplar varieties responded differently to the drought treatment depending on their place of origin.

Campbell's research group also showed that this difference occurred at the most fundamental level – the one of gene activity. Even though the specimens were all genetically identical, trees that had been obtained from Alberta used a different set of genes to respond to drought than the ones that had been obtained from Saskatchewan.

The findings of this study are relevant to foresters and gardeners in highlighting the importance of the nursery source for trees and other plants, which can determine how the plant will grow and resist stress in a forest or the garden. Additionally, the "memory" of previous experience discovered in this study could also help determine plant survival in response to changes in climate, or other environmental stresses like diseases or pests.

Dr. Campbell's research team included co-first author Dr. Katharina Bräutigam, Erin Hamnishi and Dr. Olivia Wilkins, all of the University of Toronto. The work was done in collaboration with colleagues at the University of British Columbia, Simon Fraser University, and the University of Alberta.

The research was supported by Natural Sciences and Engineering Research Council of Canada competitive research funds, and in kind contributions from Alberta Pacific Forest Industries, and Agriculture and Agrifood Canada.

The study appears in this week's issue of PNAS: The Proceedings of the National Academy of Sciences.

Karen Ho | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>