Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research pushes back history of crop development 10,000 years

23.09.2008
Until recently researchers believed the story of the origin of agriculture was one of a relatively sudden appearance of plant cultivation in the Near East around 10,000 years ago spreading quickly into Europe and dovetailing conveniently with ideas about how quickly language and population genes spread from the Near East to Europe. Initially, genetics appeared to support this idea but now cracks are beginning to appear in the evidence underpinning that model.

Now a team led by Dr Robin Allaby from the University of Warwick have developed a new mathematical model that shows how plant agriculture actually began much earlier than first thought, well before the Younger Dryas (the last "big freeze" with glacial conditions in the higher latitudes of the Northern Hemisphere). It also shows that useful gene types could have actually taken thousands of years to become stable.

Up till now researchers believed in a rapid establishment of efficient agriculture which came about as artificial selection was easily able to dominate natural plant selection, and, crucially, as a consequence they thought most crops came from a single location and single domestication event.

However recent archaeological evidence has already begun to undermine this model pushing back the date of the first appearance of plant agriculture. The best example of this being the archaeological site Ohalo II in Syria where more than 90,000 plant fragments from 23,000 years ago show that wild cereals were being gathered over 10,000 years earlier than previously thought, and before the last glacial maximum (18,000-15,000 years ago).

The field of Archaeobotany is also producing further evidence to undermine the quick development model. The tough rachis mutant is caused by a single recessive allele (one gene on a pair or group of genes) , and this mutant is easily identifiable in the archaeological specimens as a jagged scar on the chaff of the plant noting an abscission (shedding of a body part) as opposed to the smooth abscission scar associated with the wild type brittle rachis.

Simply counting the proportion of chaff types in a sample gives a direct measure of frequency of the two different gene types in this plant. That study has shown that the tough rachis mutant appeared some 9,250 years ago and had not reached fixation over 3,000 years later even after the spread of agriculture into Europe was well underway. Studies like these have shown that the rise of the domestication syndrome was a slow process and that plant traits appeared in slow sequence, not together over a short period of time.

Genome wide surveys of crops such as einkorn and barley that in the past that have suggested a single origin from a narrow geographical range, supporting the rapid establishment view, have long been in conflict with other gene studies. The most notable conflict is in the case of barley for which there is a large body of evidence that suggests more than one common ancestor was used in its development.

These challenges to the fast model of agricultural development need a new model to explain how and why the development was so slow and demonstrate why artificial selection of just one plant type does not have the expected quick result. This computer model has now been provided by Dr Robin Allaby and his team at the University of Warwick, the Institute of Archaeology, University College London, and Manchester Interdisciplinary Biocentre has outlined the new mathematical model in a paper published in Proceedings of the National Academy of Sciences USA 2008 and in a summary article in the Biologist (2008 55:94-99).

Their paper entitled The genetic expectations of a protracted model for the origins of domesticated crops used computer simulations that showed that over time a cultivated population will become monophyletic (settle into one stable species) at a rate proportional to its population size as compared various gene variations in the wild populations. They found this rate of change matched closely the 3000 years it took the tough rachis mutant to become established.

Ironically, this process is actually accelerated if there is more than one wild source population (in other words if attempts at domestication happen more than once) because any resulting hybrid between those domesticated populations then has a heightened differentiation compared with either one of the wild populations of the two parent plants.

This mathematical model also more supportive of a longer complex origin of plants through cross breeding of a number of attempts at domestication rather than a single plant type being selectively bred and from a single useful mutation that is selectively grown quickly out paces the benefits natural selection

Dr Robin Allaby says:

"This picture of protracted development of crops has major implications for the understanding of the biology of the domestication process and these strike chords with other areas of evolutionary biology."

"This lengthy development should favour the close linkage of domestication syndrome trait genes which may become much more important because linked genes will not be broken up by gene flow – and this makes trait selection and retention easier. Interestingly, as more crop genomes become mapped, the close linkage of two or more domestication syndrome genes has been reported on several occasions."

"This process has similarities to the evolution of ‘supergenes’ in which many genes cluster around a single locus to contribute to one overall purpose."

"We now need to move this research area to a new level. Domestication was a complex process and can now be viewed more legitimately as the paragon of evolutionary process that Darwin originally recognized. There are many interacting factors involved that we know about operating on a wide range of levels from the gene to the farmer and climate – the challenge is to integrate them into a single story."

For further information please contact:

Dr Robin Allaby, Warwick HRI
University of Warwick, Tel 024 76 575059
Email: r.g.allaby@warwick.ac.uk
Peter Dunn, Press and Media Relations Manager
University of Warwick Tel: 02476 523708
mobile 07767 655860
p.j.dunn@warwick.ac.uk

Dr. Robin Allaby | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>