Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More research needed to make good on biofuel promise

07.10.2008
While cellulosic biofuels derived from grasses, crop residues and inedible plant parts have real potential to be more efficient and environmentally friendly than grain-based biofuels like corn ethanol, more research and science-based policies are needed to reap these benefits, says an international group of experts.

In an article published Friday (Oct. 3) in the journal Science, Purdue University agricultural economist Otto Doering and a team of 22 other scientists write that there is an urgent need for more comprehensive and collaborative research. This will help next-generation fuels avoid the pitfalls of grain-based biofuels, which include increased nutrient runoff and clearing of new land to recoup lost food production, Doering said.

"It's important that we begin thinking about how to deal with the unintended consequences of cellulosic biofuels as early as possible in order to ensure that they can be produced sustainably," Doering said.

The Renewable Fuel Standard within last year's energy bill guarantees cellulosic biofuels a relatively bright future, mandating that American companies purchase 21 billion gallons of cellulosic ethanol by 2022. But many questions remain unanswered, like how to comprehensively measure the impact of biofuels. To date, measures often reflect a single dimension rather than considering the system as a whole.

"There are a broad array of concerns," Doering said. "We need to consider biofuel's likely impact on water use and availability along with water quality, especially nutrient runoff. Greenhouse gas emissions must also be considered, as well as effects on soils and the landscape."

Rising demand for corn grain ethanol has gone hand-in-hand with increased water use and, oftentimes, increased nutrient runoff, Doering said. There also is mixed evidence that corn grain ethanol reduces greenhouse gas emissions. The intensive corn cultivation encouraged by high ethanol demand can degrade soil and water quality, he said.

Doering, recently appointed to the Environmental Protection Agency's Scientific Advisory Board, said more work is needed to develop and successfully apply "best management practices" to minimize nutrient, chemical and water use while limiting greenhouse gas emissions.

It's important to remember, Doering said, that existing best management practices can help soften the impact of increased corn production and intensified agriculture. Such practices include no-till farming methods, planting of cover crops, diversity-oriented crop rotation and inclusion of uncultivated fallow land into the landscape. All these practices help retain soil nutrients and offer benefits like wildlife habitat and natural pest suppression.

Cellulose, a complex carbohydrate present in all plant tissues, is more abundant in plants than starch. Humans also are unable to digest cellulose. This means cellulosic feedstocks are less likely to displace acreage devoted to food crops.

"The paper is really a plea to think carefully before jumping into cellulosics," Doering said. "We want to avoid making mistakes we're likely to later regret."

Michigan State University researcher G. Philip Robertson was lead author of the Science article. Authors hail from universities and institutions from two countries and 16 states.

"Business as usual writ larger is not an environmentally welcome outcome," the authors conclude.

Writer: Douglas M. Main, (765) 496-2050, dmain@purdue.edu
Source:Otto Doering, (765) 494-4226, doering@purdue.edu

Douglas M. Main | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>