Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


More research needed to make good on biofuel promise

While cellulosic biofuels derived from grasses, crop residues and inedible plant parts have real potential to be more efficient and environmentally friendly than grain-based biofuels like corn ethanol, more research and science-based policies are needed to reap these benefits, says an international group of experts.

In an article published Friday (Oct. 3) in the journal Science, Purdue University agricultural economist Otto Doering and a team of 22 other scientists write that there is an urgent need for more comprehensive and collaborative research. This will help next-generation fuels avoid the pitfalls of grain-based biofuels, which include increased nutrient runoff and clearing of new land to recoup lost food production, Doering said.

"It's important that we begin thinking about how to deal with the unintended consequences of cellulosic biofuels as early as possible in order to ensure that they can be produced sustainably," Doering said.

The Renewable Fuel Standard within last year's energy bill guarantees cellulosic biofuels a relatively bright future, mandating that American companies purchase 21 billion gallons of cellulosic ethanol by 2022. But many questions remain unanswered, like how to comprehensively measure the impact of biofuels. To date, measures often reflect a single dimension rather than considering the system as a whole.

"There are a broad array of concerns," Doering said. "We need to consider biofuel's likely impact on water use and availability along with water quality, especially nutrient runoff. Greenhouse gas emissions must also be considered, as well as effects on soils and the landscape."

Rising demand for corn grain ethanol has gone hand-in-hand with increased water use and, oftentimes, increased nutrient runoff, Doering said. There also is mixed evidence that corn grain ethanol reduces greenhouse gas emissions. The intensive corn cultivation encouraged by high ethanol demand can degrade soil and water quality, he said.

Doering, recently appointed to the Environmental Protection Agency's Scientific Advisory Board, said more work is needed to develop and successfully apply "best management practices" to minimize nutrient, chemical and water use while limiting greenhouse gas emissions.

It's important to remember, Doering said, that existing best management practices can help soften the impact of increased corn production and intensified agriculture. Such practices include no-till farming methods, planting of cover crops, diversity-oriented crop rotation and inclusion of uncultivated fallow land into the landscape. All these practices help retain soil nutrients and offer benefits like wildlife habitat and natural pest suppression.

Cellulose, a complex carbohydrate present in all plant tissues, is more abundant in plants than starch. Humans also are unable to digest cellulose. This means cellulosic feedstocks are less likely to displace acreage devoted to food crops.

"The paper is really a plea to think carefully before jumping into cellulosics," Doering said. "We want to avoid making mistakes we're likely to later regret."

Michigan State University researcher G. Philip Robertson was lead author of the Science article. Authors hail from universities and institutions from two countries and 16 states.

"Business as usual writ larger is not an environmentally welcome outcome," the authors conclude.

Writer: Douglas M. Main, (765) 496-2050,
Source:Otto Doering, (765) 494-4226,

Douglas M. Main | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>