Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More research needed to make good on biofuel promise

07.10.2008
While cellulosic biofuels derived from grasses, crop residues and inedible plant parts have real potential to be more efficient and environmentally friendly than grain-based biofuels like corn ethanol, more research and science-based policies are needed to reap these benefits, says an international group of experts.

In an article published Friday (Oct. 3) in the journal Science, Purdue University agricultural economist Otto Doering and a team of 22 other scientists write that there is an urgent need for more comprehensive and collaborative research. This will help next-generation fuels avoid the pitfalls of grain-based biofuels, which include increased nutrient runoff and clearing of new land to recoup lost food production, Doering said.

"It's important that we begin thinking about how to deal with the unintended consequences of cellulosic biofuels as early as possible in order to ensure that they can be produced sustainably," Doering said.

The Renewable Fuel Standard within last year's energy bill guarantees cellulosic biofuels a relatively bright future, mandating that American companies purchase 21 billion gallons of cellulosic ethanol by 2022. But many questions remain unanswered, like how to comprehensively measure the impact of biofuels. To date, measures often reflect a single dimension rather than considering the system as a whole.

"There are a broad array of concerns," Doering said. "We need to consider biofuel's likely impact on water use and availability along with water quality, especially nutrient runoff. Greenhouse gas emissions must also be considered, as well as effects on soils and the landscape."

Rising demand for corn grain ethanol has gone hand-in-hand with increased water use and, oftentimes, increased nutrient runoff, Doering said. There also is mixed evidence that corn grain ethanol reduces greenhouse gas emissions. The intensive corn cultivation encouraged by high ethanol demand can degrade soil and water quality, he said.

Doering, recently appointed to the Environmental Protection Agency's Scientific Advisory Board, said more work is needed to develop and successfully apply "best management practices" to minimize nutrient, chemical and water use while limiting greenhouse gas emissions.

It's important to remember, Doering said, that existing best management practices can help soften the impact of increased corn production and intensified agriculture. Such practices include no-till farming methods, planting of cover crops, diversity-oriented crop rotation and inclusion of uncultivated fallow land into the landscape. All these practices help retain soil nutrients and offer benefits like wildlife habitat and natural pest suppression.

Cellulose, a complex carbohydrate present in all plant tissues, is more abundant in plants than starch. Humans also are unable to digest cellulose. This means cellulosic feedstocks are less likely to displace acreage devoted to food crops.

"The paper is really a plea to think carefully before jumping into cellulosics," Doering said. "We want to avoid making mistakes we're likely to later regret."

Michigan State University researcher G. Philip Robertson was lead author of the Science article. Authors hail from universities and institutions from two countries and 16 states.

"Business as usual writ larger is not an environmentally welcome outcome," the authors conclude.

Writer: Douglas M. Main, (765) 496-2050, dmain@purdue.edu
Source:Otto Doering, (765) 494-4226, doering@purdue.edu

Douglas M. Main | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>