Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Aims for Insecticide That Targets Malaria Mosquitoes

28.05.2013
In malaria-ridden parts of Africa, mosquito netting protects people from being infected while they sleep; now, a University of Florida entomologist wants to improve the netting by coating it with insecticide toxic only to mosquitoes.

The insecticide would work by interfering with an enzyme found in the nervous systems of mosquitoes and many other organisms, called acetylcholinesterase.

Existing insecticides target the enzyme but affect a broad range of species, said entomologist Jeff Bloomquist, a professor in UF’s Emerging Pathogens Institute and its Institute of Food and Agricultural Sciences.

Acetylcholinesterase helps regulate nervous system activity by stopping electrical signaling in nerve cells. If the enzyme can’t do its job, the mosquito begins convulsing and dies. The research team’s goal is to develop compounds perfectly matched to the acetylcholinesterase molecules in malaria-transmitting mosquitoes, he said.

“A simple analogy would be that we’re trying to make a key that fits perfectly into a lock,” Bloomquist said. “We want to shut down the enzyme, but only in target species.”

Malaria is spread by mosquitoes in the Anopheles genus, notably Anopheles gambiae, native to Africa. The disease is common in poor communities where homes may not have adequate screens to keep flying insects out.

Malaria is caused by microscopic organisms called protists, which are present in the saliva of infected female mosquitoes and transmitted when the mosquitoes bite.

Initial symptoms of the disease can include fever, chills, convulsions, headaches and nausea. In severe cases, malaria can cause kidney failure, coma and death. Worldwide, malaria infected about 219 million people in 2010 and killed about 660,000, according to the Centers for Disease Control and Prevention. About 90 percent of those infected lived in Africa.

Bloomquist and colleagues at Virginia Tech, where the project is based, are trying to perfect mosquito-specific compounds that can be manufactured on a large scale and applied to mosquito netting and surfaces where the pests might land.

It will take at least four to five years before the team has developed and tested a compound enough that it’s ready to be submitted for federal approval, Bloomquist said.

The team recently published a study in the journal Pesticide Biochemistry and Physiology comparing eight experimental compounds with commercially available insecticides that target the enzyme.

Though they were less toxic to mosquitoes than commercial products, the experimental compounds were far more selective, indicating researchers are on the right track, he said.

“The compounds we’re using are not very toxic to honeybees, fish and mammals, but we need to refine them further, make them more toxic to mosquitoes and safer for nontarget organisms,” he said.

Funding for the project came from a five-year, $3.6 million grant from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.

In Florida, malaria was a significant problem in the early 20th century, transmitted by native Anopheles mosquitoes. The disease has been greatly curtailed via mosquito-control practices but even today, cases are occasionally reported in the Sunshine State.

Source: Jeff Bloomquist, jbquist@epi.ufl.edu, 352-273-9417
Writer: Tom Nordlie, tnordlie@ufl.edu, 352-273-3567

Tom Nordlie | Newswise
Further information:
http://www.ufl.edu

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>