Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Aims for Insecticide That Targets Malaria Mosquitoes

28.05.2013
In malaria-ridden parts of Africa, mosquito netting protects people from being infected while they sleep; now, a University of Florida entomologist wants to improve the netting by coating it with insecticide toxic only to mosquitoes.

The insecticide would work by interfering with an enzyme found in the nervous systems of mosquitoes and many other organisms, called acetylcholinesterase.

Existing insecticides target the enzyme but affect a broad range of species, said entomologist Jeff Bloomquist, a professor in UF’s Emerging Pathogens Institute and its Institute of Food and Agricultural Sciences.

Acetylcholinesterase helps regulate nervous system activity by stopping electrical signaling in nerve cells. If the enzyme can’t do its job, the mosquito begins convulsing and dies. The research team’s goal is to develop compounds perfectly matched to the acetylcholinesterase molecules in malaria-transmitting mosquitoes, he said.

“A simple analogy would be that we’re trying to make a key that fits perfectly into a lock,” Bloomquist said. “We want to shut down the enzyme, but only in target species.”

Malaria is spread by mosquitoes in the Anopheles genus, notably Anopheles gambiae, native to Africa. The disease is common in poor communities where homes may not have adequate screens to keep flying insects out.

Malaria is caused by microscopic organisms called protists, which are present in the saliva of infected female mosquitoes and transmitted when the mosquitoes bite.

Initial symptoms of the disease can include fever, chills, convulsions, headaches and nausea. In severe cases, malaria can cause kidney failure, coma and death. Worldwide, malaria infected about 219 million people in 2010 and killed about 660,000, according to the Centers for Disease Control and Prevention. About 90 percent of those infected lived in Africa.

Bloomquist and colleagues at Virginia Tech, where the project is based, are trying to perfect mosquito-specific compounds that can be manufactured on a large scale and applied to mosquito netting and surfaces where the pests might land.

It will take at least four to five years before the team has developed and tested a compound enough that it’s ready to be submitted for federal approval, Bloomquist said.

The team recently published a study in the journal Pesticide Biochemistry and Physiology comparing eight experimental compounds with commercially available insecticides that target the enzyme.

Though they were less toxic to mosquitoes than commercial products, the experimental compounds were far more selective, indicating researchers are on the right track, he said.

“The compounds we’re using are not very toxic to honeybees, fish and mammals, but we need to refine them further, make them more toxic to mosquitoes and safer for nontarget organisms,” he said.

Funding for the project came from a five-year, $3.6 million grant from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.

In Florida, malaria was a significant problem in the early 20th century, transmitted by native Anopheles mosquitoes. The disease has been greatly curtailed via mosquito-control practices but even today, cases are occasionally reported in the Sunshine State.

Source: Jeff Bloomquist, jbquist@epi.ufl.edu, 352-273-9417
Writer: Tom Nordlie, tnordlie@ufl.edu, 352-273-3567

Tom Nordlie | Newswise
Further information:
http://www.ufl.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>