Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Aims for Insecticide That Targets Malaria Mosquitoes

28.05.2013
In malaria-ridden parts of Africa, mosquito netting protects people from being infected while they sleep; now, a University of Florida entomologist wants to improve the netting by coating it with insecticide toxic only to mosquitoes.

The insecticide would work by interfering with an enzyme found in the nervous systems of mosquitoes and many other organisms, called acetylcholinesterase.

Existing insecticides target the enzyme but affect a broad range of species, said entomologist Jeff Bloomquist, a professor in UF’s Emerging Pathogens Institute and its Institute of Food and Agricultural Sciences.

Acetylcholinesterase helps regulate nervous system activity by stopping electrical signaling in nerve cells. If the enzyme can’t do its job, the mosquito begins convulsing and dies. The research team’s goal is to develop compounds perfectly matched to the acetylcholinesterase molecules in malaria-transmitting mosquitoes, he said.

“A simple analogy would be that we’re trying to make a key that fits perfectly into a lock,” Bloomquist said. “We want to shut down the enzyme, but only in target species.”

Malaria is spread by mosquitoes in the Anopheles genus, notably Anopheles gambiae, native to Africa. The disease is common in poor communities where homes may not have adequate screens to keep flying insects out.

Malaria is caused by microscopic organisms called protists, which are present in the saliva of infected female mosquitoes and transmitted when the mosquitoes bite.

Initial symptoms of the disease can include fever, chills, convulsions, headaches and nausea. In severe cases, malaria can cause kidney failure, coma and death. Worldwide, malaria infected about 219 million people in 2010 and killed about 660,000, according to the Centers for Disease Control and Prevention. About 90 percent of those infected lived in Africa.

Bloomquist and colleagues at Virginia Tech, where the project is based, are trying to perfect mosquito-specific compounds that can be manufactured on a large scale and applied to mosquito netting and surfaces where the pests might land.

It will take at least four to five years before the team has developed and tested a compound enough that it’s ready to be submitted for federal approval, Bloomquist said.

The team recently published a study in the journal Pesticide Biochemistry and Physiology comparing eight experimental compounds with commercially available insecticides that target the enzyme.

Though they were less toxic to mosquitoes than commercial products, the experimental compounds were far more selective, indicating researchers are on the right track, he said.

“The compounds we’re using are not very toxic to honeybees, fish and mammals, but we need to refine them further, make them more toxic to mosquitoes and safer for nontarget organisms,” he said.

Funding for the project came from a five-year, $3.6 million grant from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.

In Florida, malaria was a significant problem in the early 20th century, transmitted by native Anopheles mosquitoes. The disease has been greatly curtailed via mosquito-control practices but even today, cases are occasionally reported in the Sunshine State.

Source: Jeff Bloomquist, jbquist@epi.ufl.edu, 352-273-9417
Writer: Tom Nordlie, tnordlie@ufl.edu, 352-273-3567

Tom Nordlie | Newswise
Further information:
http://www.ufl.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>