Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report describes Central Hardwoods forest vulnerabilities, climate change impacts

04.03.2014

Higher temperatures, more heavy precipitation, and drought. It's all expected in the Central Hardwoods Region of southern Indiana, southern Illinois, and the Missouri Ozarks, according to a new report by the U.S. Forest Service, and partners that assesses the vulnerability of the region's forest ecosystems and its ability to adapt to a changing climate.

More than 30 scientists and forest managers contributed to the report, which is part of the Central Hardwoods Climate Change Response Framework, a collaboration of federal, state, academic and private partners led by the Forest Service's Northern Institute of Applied Climate Science (NIACS). "Central Hardwoods Ecosystem Vulnerability Assessment and Synthesis: A Report from the Central Hardwoods Climate Change Response Framework Project," was published by the U.S. Forest Service's Northern Research Station and is available online at: http://www.nrs.fs.fed.us/pubs/45430


A new report from the US Forest Service, the Northern Institute of Applied Climate Science, and partners describes possible climate change effects in southern Illinois, southern Indiana and the Missouri Ozarks and assesses forests' vulnerability to changes.

Credit: U.S. Forest Service

"People often think of climate change as being distant, either geographically or temporally," said Leslie Brandt, the report's lead author and a climate change specialist with NIACS. "Our intent was to create a climate change resource that will be relevant to people who work, study, recreate, manage and care about the ecosystems in the Central Hardwoods Region."

In the Central Hardwoods, the effects of a changing climate are expected to include rising temperatures due to a rise in greenhouse gas concentrations, leading to longer growing seasons. Winter temperatures are also expected to increase in the area, leading to changes in snow cover and soil frost. The nature and timing of precipitation will change, research suggests, with some studies showing that climate change will decrease soil moisture later in the growing season.

... more about:
»Climate »Station »forests »species

Other findings of the vulnerability assessment include:

  • Conditions are expected to be less favorable for northern species such as sugar maple, American beech and white ash and become more suitable for southern species such as shortleaf pine. 
  • Forest fragmentation, an existing stressor for the region's forests, may reduce the ability of species that are adapted to future climate conditions to expand into new areas. 
  • Ecosystems that are adapted to frequent fire, such as open woodlands and savannas, may be more resilient to climate change because warmer temperatures are projected to increase the risk of wildfire.

"Plants, animals, and people all depend on forests and may all face additional challenges as temperatures increase and precipitation patterns shift," said John Shuey, a co-author of the study and Director of Conservation Science for the Indiana Chapter of The Nature Conservancy. "But we don't have to wait until these changes wreak havoc on our forest habitats. We can start managing for the future today by nudging our forests towards species adapted to withstand future climates."

More than a century of weather records demonstrate a changing climate for the Central Hardwoods, a region that is 40 percent forested, with about 80 percent of forested land privately owned. Since 1900, minimum temperatures in the Central Hardwood Region have increased by 1 to 2 degrees Fahrenheit and maximum temperatures have decreased by a similar amount. The region is receiving 12 to 17 percent more precipitation, particularly in the spring and fall since the turn of the last century. Over the past 30 years, more rain has been falling as heavy precipitation events of 3 inches or greater. Since the 1970s, a decrease in snow cover has led to an increase in soil frost.

"Confronting the challenge of climate change presents opportunities for managers and other decision-makers to plan ahead, foster resilient landscapes, and ensure that the benefits that forests provide are sustained into the future," said Michael T. Rains, Director of the Northern Research Station and the Forest Products Laboratory. "Forest Service science is delivering tools and data that will help managers in the Central Hardwoods and throughout the nation meet this challenge."

###

The Northern Institute of Applied Climate Science (NIACS) is a collaborative effort among the Forest Service, universities, and forest industry to provide information on managing forests for climate change adaptation, enhanced carbon sequestration, and sustainable production of bioenergy and materials. As a regional, multi-institutional entity, NIACS builds partnerships, facilitates research, and synthesizes information to bridge the gap between carbon and climate science research and the information and management needs of land owners and managers, policymakers, and members of the public.

The mission of the U.S. Forest Service is to sustain the health, diversity, and productivity of the nation's forests and grasslands to meet the needs of present and future generations. The agency has either a direct or indirect role in stewardship of about 80 percent of our nation's forests, amounting to 850 million acres including 100 million acres of urban forests gracing the nation's cities, where 80 percent of Americans live. The mission of the Forest Service's Northern Research Station is to improve people's lives and help sustain the natural resources in the Northeast and Midwest through leading-edge science and effective information delivery.

Jane Hodgins | EurekAlert!
Further information:
http://www.fs.fed.us

Further reports about: Climate Station forests species

More articles from Agricultural and Forestry Science:

nachricht Tropical deforestation releases large amounts of soil carbon
28.07.2015 | Georg-August-Universität Göttingen

nachricht Drivers of temporal changes in temperate forest plant diversity
27.07.2015 | Friedrich-Schiller-Universität Jena

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>