Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report describes Central Hardwoods forest vulnerabilities, climate change impacts

04.03.2014

Higher temperatures, more heavy precipitation, and drought. It's all expected in the Central Hardwoods Region of southern Indiana, southern Illinois, and the Missouri Ozarks, according to a new report by the U.S. Forest Service, and partners that assesses the vulnerability of the region's forest ecosystems and its ability to adapt to a changing climate.

More than 30 scientists and forest managers contributed to the report, which is part of the Central Hardwoods Climate Change Response Framework, a collaboration of federal, state, academic and private partners led by the Forest Service's Northern Institute of Applied Climate Science (NIACS). "Central Hardwoods Ecosystem Vulnerability Assessment and Synthesis: A Report from the Central Hardwoods Climate Change Response Framework Project," was published by the U.S. Forest Service's Northern Research Station and is available online at: http://www.nrs.fs.fed.us/pubs/45430


A new report from the US Forest Service, the Northern Institute of Applied Climate Science, and partners describes possible climate change effects in southern Illinois, southern Indiana and the Missouri Ozarks and assesses forests' vulnerability to changes.

Credit: U.S. Forest Service

"People often think of climate change as being distant, either geographically or temporally," said Leslie Brandt, the report's lead author and a climate change specialist with NIACS. "Our intent was to create a climate change resource that will be relevant to people who work, study, recreate, manage and care about the ecosystems in the Central Hardwoods Region."

In the Central Hardwoods, the effects of a changing climate are expected to include rising temperatures due to a rise in greenhouse gas concentrations, leading to longer growing seasons. Winter temperatures are also expected to increase in the area, leading to changes in snow cover and soil frost. The nature and timing of precipitation will change, research suggests, with some studies showing that climate change will decrease soil moisture later in the growing season.

... more about:
»Climate »Station »forests »species

Other findings of the vulnerability assessment include:

  • Conditions are expected to be less favorable for northern species such as sugar maple, American beech and white ash and become more suitable for southern species such as shortleaf pine. 
  • Forest fragmentation, an existing stressor for the region's forests, may reduce the ability of species that are adapted to future climate conditions to expand into new areas. 
  • Ecosystems that are adapted to frequent fire, such as open woodlands and savannas, may be more resilient to climate change because warmer temperatures are projected to increase the risk of wildfire.

"Plants, animals, and people all depend on forests and may all face additional challenges as temperatures increase and precipitation patterns shift," said John Shuey, a co-author of the study and Director of Conservation Science for the Indiana Chapter of The Nature Conservancy. "But we don't have to wait until these changes wreak havoc on our forest habitats. We can start managing for the future today by nudging our forests towards species adapted to withstand future climates."

More than a century of weather records demonstrate a changing climate for the Central Hardwoods, a region that is 40 percent forested, with about 80 percent of forested land privately owned. Since 1900, minimum temperatures in the Central Hardwood Region have increased by 1 to 2 degrees Fahrenheit and maximum temperatures have decreased by a similar amount. The region is receiving 12 to 17 percent more precipitation, particularly in the spring and fall since the turn of the last century. Over the past 30 years, more rain has been falling as heavy precipitation events of 3 inches or greater. Since the 1970s, a decrease in snow cover has led to an increase in soil frost.

"Confronting the challenge of climate change presents opportunities for managers and other decision-makers to plan ahead, foster resilient landscapes, and ensure that the benefits that forests provide are sustained into the future," said Michael T. Rains, Director of the Northern Research Station and the Forest Products Laboratory. "Forest Service science is delivering tools and data that will help managers in the Central Hardwoods and throughout the nation meet this challenge."

###

The Northern Institute of Applied Climate Science (NIACS) is a collaborative effort among the Forest Service, universities, and forest industry to provide information on managing forests for climate change adaptation, enhanced carbon sequestration, and sustainable production of bioenergy and materials. As a regional, multi-institutional entity, NIACS builds partnerships, facilitates research, and synthesizes information to bridge the gap between carbon and climate science research and the information and management needs of land owners and managers, policymakers, and members of the public.

The mission of the U.S. Forest Service is to sustain the health, diversity, and productivity of the nation's forests and grasslands to meet the needs of present and future generations. The agency has either a direct or indirect role in stewardship of about 80 percent of our nation's forests, amounting to 850 million acres including 100 million acres of urban forests gracing the nation's cities, where 80 percent of Americans live. The mission of the Forest Service's Northern Research Station is to improve people's lives and help sustain the natural resources in the Northeast and Midwest through leading-edge science and effective information delivery.

Jane Hodgins | EurekAlert!
Further information:
http://www.fs.fed.us

Further reports about: Climate Station forests species

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>