Plants see the light to help beat the big freeze

The research in the Department of Biology reveals that plants react to change in light quality in order to develop freezing tolerance. It has been published in Nature Genetics and was funded by the BBSRC and Royal Society.

The study has been described as a ‘harbinger of a new era of understanding regarding how plants grow and thrive in a dynamic and complex environment’ in the News and Views section of Nature Genetics (Kumar V and Wigge PA (2007) Nat. Gen 39, 1309-1310) and selected as a key article by Faculty of 1000.

This study, led by Dr. Kerry Franklin and Professor Garry Whitelam, will additionally be reviewed in the ‘Leading Edge: Molecular Biology Select Series’ section of the journal Cell (‘The Long Twilight Struggle of the Plant Cold War’- out on December 14th).

Dr Franklin said: “To survive the freezing temperatures of winter, many plants undergo a process termed cold acclimation. In response to the cooler temperatures that presage the onset of winter, plants increase the expression of a large number of genes which lead to the accumulation of proteins and sugars that confer ‘antifreeze’ properties to cells”.

“This new research at the University of Leicester has revealed that plants also react to another environmental signal, a change in light quality, in order to develop freezing tolerance.”

These findings demonstrate how plants can integrate very different environmental signals, in this case light quality and temperature to best prepare for changes in their environment.

Media Contact

Ather Mirza alfa

More Information:

http://www.le.ac.uk

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors