Decoy Makes Sitting Duck Of Superbugs

Scientists from the John Innes Centre have proven that by taking a short stretch of DNA from a bacterium and delivering it with an existing antibiotic they can switch off antibiotic resistance.

Together with technology transfer company PBL, the scientists have launched a spin-out company, Procarta Biosystems Ltd, to develop the technology.

“The DNA sequence acts as a decoy, disrupting gene expression and blocking resistance”, said Dr Michael McArthur from JIC.

“We are putting genetic information directly into drugs. This is the first application of a DNA based therapy”.

The scientists have also patented a way of discovering decoys in bacteria without necessarily having to know the genes involved. This means they can develop effective new drugs against any bacterium within a couple of years and at a fraction of the normal cost.

The technology can give fresh patent life to existing antibiotics – when combined with a decoy they can be patented as a new drug.

This comes at a time when the number of new antibiotics receiving approval has dramatically declined. Faced with antibiotic resistance the pharmaceutical industry is unlikely to be able to deliver new products.

“Natural resistance will always be hot on the heels of a new antibiotic because they co-evolve”, said Dr McArthur. “Ours’ is not a traditional pharmaceutical approach and provides a completely new challenge to bacteria”.

The technology can also be used to improve the production of antibiotics by bacteria and to produce enzymes and other compounds using bacteria for use in industrial processes.

Many industrial processes are harsh and unsustainable, using petrochemicals, high temperatures and creating toxic by-products. In industrial biotechnology, also called “white biotechnology”, bacteria make medically and commercially important compounds biologically.

“By using bacteria, many industrial processes could be cleaned up”, said Dr McArthur.

The Procarta scientists found that the bacterium Streptomyces produces a particularly high yield of enzymes and proteins. Unusually, it can also secrete the proteins it produces so they do not have to be extracted.

“Streptomyces is the enzyme producing bacterium with bells and whistles, set to make a major contribution to a market already predicted to be worth £400 million by 2010”, said Dr McArthur.

We use the products of white biotechnology in our everyday lives. They contribute to ingredients in the food we eat, energy we use that has been generated with renewable biomass rather than fossil fuels, medicines we take, and everyday products such as detergents, paint and paper.

Media Contact

Zoe Dunford alfa

More Information:

http://www.jic.ac.uk

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors