Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MTT’s barley gene transfer technique ready

03.12.2007
MTT Agrifood Research Finland has introduced an Agrobacterium-mediated gene transfer technique for barley. Genetically modified barley is at the same time the main opening in plant gene transfer research at MTT.

Development of gene transfer methods forms part of the Disease Resistant Barley project, which provides genomic tools for managing and monitoring barley net blotch. The project, which started in 2005 and runs until 2011, is implemented in cooperation between MTT, the University of Helsinki, and Boreal Plant Breeding Ltd.

In addition to gene transfer, our research focuses include gene mapping, isolation of genes on the basis of map location, new gene replication methods, and bioinformatics.

Net blotch is the number one disease afflicting barley in Finland. Although the area of the barley genome concerned with resistance to net blotch has been identified, there is no accurate information on the genes located there. Gene transfer enables us to identify and verify which genes leads to net blotch resistance in barley, and how these genes function.

– Once the gene is identified, we can use methods for plant breeding in which this characteristic can be identified from wild barley strains, for example, and new barley varieties produced through an intensified back cross programme, says Outi Manninen, the research scientist responsible for the Disease Resistant Barley project.

– Genomics makes use of gene transfer as a tool, and the production of a genetically modified (GM) variety of barley is not the actual objective. New information gleaned from the research can nevertheless be exploited in the development of GM varieties.

Marker genes transferred

The MTT plant genomics team employed Agrobacterium as the means of gene transfer. Agrobacterium is a general soil bacterium with an excellent natural capacity for gene transfer. The gene transferred to barley is a marker gene producing fluorescent protein, the colour helping to track gene function.

The project has utilized retrotransposon promoters areas isolated from the barley genome, which have been extensively researched by MTT research scientist Professor Alan Schulman. Promoters have a significant role in gene function, as they regulate at what intensity, what stage and in which parts of the plant the genes will function.

Promoter areas used in transfers are mostly derived from maize or the cauliflower mosaic virus. It is hoped the usual phenomenon of promoters turning off if many gene copies are transferred simultaneously will be avoided with the aid of new Finnish applications.

Sufficiently efficient

Outi Manninen says that all plants produced from embryo cell tissue in MTT research have proved to be genetically modified. – The method has now acquired an ample degree of efficiency and is very effective.

Juha Heikkilae | alfa
Further information:
http://www.mtt.fi/english/

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>