Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MTT’s barley gene transfer technique ready

03.12.2007
MTT Agrifood Research Finland has introduced an Agrobacterium-mediated gene transfer technique for barley. Genetically modified barley is at the same time the main opening in plant gene transfer research at MTT.

Development of gene transfer methods forms part of the Disease Resistant Barley project, which provides genomic tools for managing and monitoring barley net blotch. The project, which started in 2005 and runs until 2011, is implemented in cooperation between MTT, the University of Helsinki, and Boreal Plant Breeding Ltd.

In addition to gene transfer, our research focuses include gene mapping, isolation of genes on the basis of map location, new gene replication methods, and bioinformatics.

Net blotch is the number one disease afflicting barley in Finland. Although the area of the barley genome concerned with resistance to net blotch has been identified, there is no accurate information on the genes located there. Gene transfer enables us to identify and verify which genes leads to net blotch resistance in barley, and how these genes function.

– Once the gene is identified, we can use methods for plant breeding in which this characteristic can be identified from wild barley strains, for example, and new barley varieties produced through an intensified back cross programme, says Outi Manninen, the research scientist responsible for the Disease Resistant Barley project.

– Genomics makes use of gene transfer as a tool, and the production of a genetically modified (GM) variety of barley is not the actual objective. New information gleaned from the research can nevertheless be exploited in the development of GM varieties.

Marker genes transferred

The MTT plant genomics team employed Agrobacterium as the means of gene transfer. Agrobacterium is a general soil bacterium with an excellent natural capacity for gene transfer. The gene transferred to barley is a marker gene producing fluorescent protein, the colour helping to track gene function.

The project has utilized retrotransposon promoters areas isolated from the barley genome, which have been extensively researched by MTT research scientist Professor Alan Schulman. Promoters have a significant role in gene function, as they regulate at what intensity, what stage and in which parts of the plant the genes will function.

Promoter areas used in transfers are mostly derived from maize or the cauliflower mosaic virus. It is hoped the usual phenomenon of promoters turning off if many gene copies are transferred simultaneously will be avoided with the aid of new Finnish applications.

Sufficiently efficient

Outi Manninen says that all plants produced from embryo cell tissue in MTT research have proved to be genetically modified. – The method has now acquired an ample degree of efficiency and is very effective.

Juha Heikkilae | alfa
Further information:
http://www.mtt.fi/english/

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>