Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research to decode the genetic secrets of prolific potato pest

The full weight of a consortium of world-leading scientists – including those who helped decode the entire human genome – is being thrown at a parasitic worm less than 1mm long.

The potato cyst nematode (PCN), Globodera pallida, attacks potato crops all over the world and is particularly devastating in developing countries where the potato is a subsistence crop. A £1.7 million project led by the University of Leeds to fully sequence its DNA, hopes to shed light on the mechanisms that make the tiny worm such a successful parasite – and lead to methods to sustainably manage this pest.

The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), draws together experts from the University of Leeds, the Wellcome Trust Sanger Institute, Rothamsted Research and SCRI, Scotland’s leading centre for crop research.

“Although there is partial resistance in some potato varieties, it is very difficult to breed this resistance into commercial ones - so we’re tackling the problem from a different perspective,” says Dr Peter Urwin from Leeds’ Faculty of Biological Sciences. “If we can find out exactly how this worm works so efficiently, it should lead to measures that will help the potato plant to withstand attack.”

The worm invades the roots of the potato plant and injects a substance causing the plant to create a unique cell from which it feeds via a specialised tube. By doing this, the nematode stunts root growth and deprives the potato plant of essential nutrients, which leads to lower quality, smaller crops.

Says Dr Urwin: “This tiny parasite has evolved many clever mechanisms that we hope to be able to understand more fully through this research. We have no idea what this injected substance is or how it manages to persuade the plant to create the feeding cell. In addition, its eggs can remain viable in the soil for up to twenty years, with hatching triggered by sensing chemicals released by potato roots nearby. Because of this, once a field is infected, it’s almost impossible to get rid of them.”

G. pallida is an international problem, affecting the world’s two major potato growing regions – the Ukraine and Idaho, USA – as well as 18 countries in the EU and 55 countries world wide. The widespread cultivation of potato varieties such as Maris Piper, which whilst naturally resistant to other PCNs, are not resistant to G. pallida, suggests that the significance of the worm is likely to increase.

UK farmers spend in excess of £50 million a year in efforts to manage the pest. Infestations are currently treated with toxic chemicals, which do not enter the food chain, but are expensive to apply and can make soil sterile, killing other living organisms within it.

Dr Urwin says that controlling G. pallida is essential to maintain the competitiveness of UK potato industry, which together with processing and retail markets is worth some £3 billion per year (1). “We think that consumers are more likely to support UK production that avoids pesticide residues and environmental harm and that is soundly based on a sustainable approach,” he says.

The team hope to complete the sequencing by 2012.

(1) Figures cited from the British Potato Council

Jo Kelly | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>