Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research to decode the genetic secrets of prolific potato pest

28.11.2007
The full weight of a consortium of world-leading scientists – including those who helped decode the entire human genome – is being thrown at a parasitic worm less than 1mm long.

The potato cyst nematode (PCN), Globodera pallida, attacks potato crops all over the world and is particularly devastating in developing countries where the potato is a subsistence crop. A £1.7 million project led by the University of Leeds to fully sequence its DNA, hopes to shed light on the mechanisms that make the tiny worm such a successful parasite – and lead to methods to sustainably manage this pest.

The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), draws together experts from the University of Leeds, the Wellcome Trust Sanger Institute, Rothamsted Research and SCRI, Scotland’s leading centre for crop research.

“Although there is partial resistance in some potato varieties, it is very difficult to breed this resistance into commercial ones - so we’re tackling the problem from a different perspective,” says Dr Peter Urwin from Leeds’ Faculty of Biological Sciences. “If we can find out exactly how this worm works so efficiently, it should lead to measures that will help the potato plant to withstand attack.”

The worm invades the roots of the potato plant and injects a substance causing the plant to create a unique cell from which it feeds via a specialised tube. By doing this, the nematode stunts root growth and deprives the potato plant of essential nutrients, which leads to lower quality, smaller crops.

Says Dr Urwin: “This tiny parasite has evolved many clever mechanisms that we hope to be able to understand more fully through this research. We have no idea what this injected substance is or how it manages to persuade the plant to create the feeding cell. In addition, its eggs can remain viable in the soil for up to twenty years, with hatching triggered by sensing chemicals released by potato roots nearby. Because of this, once a field is infected, it’s almost impossible to get rid of them.”

G. pallida is an international problem, affecting the world’s two major potato growing regions – the Ukraine and Idaho, USA – as well as 18 countries in the EU and 55 countries world wide. The widespread cultivation of potato varieties such as Maris Piper, which whilst naturally resistant to other PCNs, are not resistant to G. pallida, suggests that the significance of the worm is likely to increase.

UK farmers spend in excess of £50 million a year in efforts to manage the pest. Infestations are currently treated with toxic chemicals, which do not enter the food chain, but are expensive to apply and can make soil sterile, killing other living organisms within it.

Dr Urwin says that controlling G. pallida is essential to maintain the competitiveness of UK potato industry, which together with processing and retail markets is worth some £3 billion per year (1). “We think that consumers are more likely to support UK production that avoids pesticide residues and environmental harm and that is soundly based on a sustainable approach,” he says.

The team hope to complete the sequencing by 2012.

References
(1) Figures cited from the British Potato Council

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>