Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to ensure the success of agroforestry systems in developing countries

13.11.2007
Reduced soil erosion, preserved water resources, biodiversity conservation and creation, and carbon sequestration are just some of the major effects agroforestry systems have on the environment.

By modifying the microclimate for the benefit of understorey crops, agroforestry would also seem to be a way of adapting agriculture in response to climate change. Lastly, by virtue of the wider range of crops they include, agroforestry systems can also provide solutions to crises. In September, 130 researchers from 25 countries looked into this issue at the 2nd International Symposium on Multistrata Agroforestry Systems with Perennial Crops, held in Costa Rica*.

The aim was to find ways of promoting such systems, by assessing the research results obtained in the eight years since the first symposium. The participants also set out to propose appropriate mechanisms for ensuring that farmers who make the effort to adopt such ecofriendly production systems reap some reward.

A role to play in a rapidly changing environment

Multistrata agroforestry systems associating crops with trees, with the crops developing in the shade provided by the trees, have existed for some considerable time in many tropical countries. For instance, perennial crops such as coffee or cocoa can be grown in the shade of fruit and/or forest trees, making up at least three strata of vegetation. However, with the advent of intensive agriculture, some 40-50 years ago, farmers often abandoned the practice in favour of monocultures, which generate profits sooner. However, the prospects for this type of intensive agriculture, which is reliant on massive external inputs, are now limited, due to its serious adverse effects on the environment and to various economic constraints. Furthermore, times are changing, as is the climate, and public awareness is increasing. Consumers are increasingly buying "ethically", "ecologically", "organically" or "fairly", and are thus more likely to pay more to be sure of buying ecofriendly, socially responsible products. This is where the products of agroforestry systems come in.

Lower production counteracted by the environmental services rendered

However, the main obstacle to the large-scale adoption of such systems has been maintaining farmers' incomes. The environmental services rendered by agroforestry systems are now recognized, but shaded cropping can produce lower yields than intensive monocultures. This is often the case, for instance, with arabica coffee grown at more than 1000 m above sea level. Given the importance of this constraint, researchers are insisting on the need to maintain incomes. Two main ways of achieving this have been suggested. The first consists in paying farmers for the environmental services rendered by their crops. This could be done through ecolabels such as "organic" or "Rainforest Alliance", which already exist on the market, through a national system of payment for carbon sequestration or, more locally, through direct payment from users of services, for instance hydroelectric dam operators paying farmers to protect soils against erosion. The other possibility is to diversify the crops grown and domesticate woody species, in the aim of making such operations profitable by creating or improving wood product marketing channels. For instance, timber serves to improve incomes among coffee producers when coffee prices fall in Central America. Likewise, palm wine plays a major role in ensuring the sustainability of cocoa-growing systems in the forests of Ivory Coast.

Certification: a strategy to be integrated into development programmes

At the end of the symposium, it was also recommended that the issue of biodiversity be associated with that of system productivity in studies and models. In effect, while it has been clearly established that agroforestry systems conserve and/or increase flora and fauna biodiversity, the impact of that biodiversity on the economic sustainability of such systems has yet to be determined. The beneficial effects of these agroforestry systems on a landscape scale, for instance their role in the connectivity between protected areas, also need to be explained more clearly. As regards existing biophysical results, compiling them in meta-databases would make it possible to organize the available information better, communicate about methodologies and results, apply those results more effectively, and identify research requirements. A modelling approach, perhaps coupled with an analysis of these metabases, would help to resolve the most crucial issues, such as the relations between crop yields and shading, or the impact of climate change on the functions of and the services rendered by the ecosystem. Lastly, certification is a strategy that could be integrated into the very heart of development programmes. However, this would mean improving the scientific bases of the biophysical and social criteria and indicators applied when attributing ecolabels.

* The symposium was organized by the Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), CIRAD, the International Center for Research in Agroforestry (ICRAF) and the University of Wales. It followed on from an initial symposium held in February 1999, also at CATIE, in Turrialba, Costa Rica.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=802

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>