Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to ensure the success of agroforestry systems in developing countries

13.11.2007
Reduced soil erosion, preserved water resources, biodiversity conservation and creation, and carbon sequestration are just some of the major effects agroforestry systems have on the environment.

By modifying the microclimate for the benefit of understorey crops, agroforestry would also seem to be a way of adapting agriculture in response to climate change. Lastly, by virtue of the wider range of crops they include, agroforestry systems can also provide solutions to crises. In September, 130 researchers from 25 countries looked into this issue at the 2nd International Symposium on Multistrata Agroforestry Systems with Perennial Crops, held in Costa Rica*.

The aim was to find ways of promoting such systems, by assessing the research results obtained in the eight years since the first symposium. The participants also set out to propose appropriate mechanisms for ensuring that farmers who make the effort to adopt such ecofriendly production systems reap some reward.

A role to play in a rapidly changing environment

Multistrata agroforestry systems associating crops with trees, with the crops developing in the shade provided by the trees, have existed for some considerable time in many tropical countries. For instance, perennial crops such as coffee or cocoa can be grown in the shade of fruit and/or forest trees, making up at least three strata of vegetation. However, with the advent of intensive agriculture, some 40-50 years ago, farmers often abandoned the practice in favour of monocultures, which generate profits sooner. However, the prospects for this type of intensive agriculture, which is reliant on massive external inputs, are now limited, due to its serious adverse effects on the environment and to various economic constraints. Furthermore, times are changing, as is the climate, and public awareness is increasing. Consumers are increasingly buying "ethically", "ecologically", "organically" or "fairly", and are thus more likely to pay more to be sure of buying ecofriendly, socially responsible products. This is where the products of agroforestry systems come in.

Lower production counteracted by the environmental services rendered

However, the main obstacle to the large-scale adoption of such systems has been maintaining farmers' incomes. The environmental services rendered by agroforestry systems are now recognized, but shaded cropping can produce lower yields than intensive monocultures. This is often the case, for instance, with arabica coffee grown at more than 1000 m above sea level. Given the importance of this constraint, researchers are insisting on the need to maintain incomes. Two main ways of achieving this have been suggested. The first consists in paying farmers for the environmental services rendered by their crops. This could be done through ecolabels such as "organic" or "Rainforest Alliance", which already exist on the market, through a national system of payment for carbon sequestration or, more locally, through direct payment from users of services, for instance hydroelectric dam operators paying farmers to protect soils against erosion. The other possibility is to diversify the crops grown and domesticate woody species, in the aim of making such operations profitable by creating or improving wood product marketing channels. For instance, timber serves to improve incomes among coffee producers when coffee prices fall in Central America. Likewise, palm wine plays a major role in ensuring the sustainability of cocoa-growing systems in the forests of Ivory Coast.

Certification: a strategy to be integrated into development programmes

At the end of the symposium, it was also recommended that the issue of biodiversity be associated with that of system productivity in studies and models. In effect, while it has been clearly established that agroforestry systems conserve and/or increase flora and fauna biodiversity, the impact of that biodiversity on the economic sustainability of such systems has yet to be determined. The beneficial effects of these agroforestry systems on a landscape scale, for instance their role in the connectivity between protected areas, also need to be explained more clearly. As regards existing biophysical results, compiling them in meta-databases would make it possible to organize the available information better, communicate about methodologies and results, apply those results more effectively, and identify research requirements. A modelling approach, perhaps coupled with an analysis of these metabases, would help to resolve the most crucial issues, such as the relations between crop yields and shading, or the impact of climate change on the functions of and the services rendered by the ecosystem. Lastly, certification is a strategy that could be integrated into the very heart of development programmes. However, this would mean improving the scientific bases of the biophysical and social criteria and indicators applied when attributing ecolabels.

* The symposium was organized by the Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), CIRAD, the International Center for Research in Agroforestry (ICRAF) and the University of Wales. It followed on from an initial symposium held in February 1999, also at CATIE, in Turrialba, Costa Rica.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=802

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>