Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to ensure the success of agroforestry systems in developing countries

13.11.2007
Reduced soil erosion, preserved water resources, biodiversity conservation and creation, and carbon sequestration are just some of the major effects agroforestry systems have on the environment.

By modifying the microclimate for the benefit of understorey crops, agroforestry would also seem to be a way of adapting agriculture in response to climate change. Lastly, by virtue of the wider range of crops they include, agroforestry systems can also provide solutions to crises. In September, 130 researchers from 25 countries looked into this issue at the 2nd International Symposium on Multistrata Agroforestry Systems with Perennial Crops, held in Costa Rica*.

The aim was to find ways of promoting such systems, by assessing the research results obtained in the eight years since the first symposium. The participants also set out to propose appropriate mechanisms for ensuring that farmers who make the effort to adopt such ecofriendly production systems reap some reward.

A role to play in a rapidly changing environment

Multistrata agroforestry systems associating crops with trees, with the crops developing in the shade provided by the trees, have existed for some considerable time in many tropical countries. For instance, perennial crops such as coffee or cocoa can be grown in the shade of fruit and/or forest trees, making up at least three strata of vegetation. However, with the advent of intensive agriculture, some 40-50 years ago, farmers often abandoned the practice in favour of monocultures, which generate profits sooner. However, the prospects for this type of intensive agriculture, which is reliant on massive external inputs, are now limited, due to its serious adverse effects on the environment and to various economic constraints. Furthermore, times are changing, as is the climate, and public awareness is increasing. Consumers are increasingly buying "ethically", "ecologically", "organically" or "fairly", and are thus more likely to pay more to be sure of buying ecofriendly, socially responsible products. This is where the products of agroforestry systems come in.

Lower production counteracted by the environmental services rendered

However, the main obstacle to the large-scale adoption of such systems has been maintaining farmers' incomes. The environmental services rendered by agroforestry systems are now recognized, but shaded cropping can produce lower yields than intensive monocultures. This is often the case, for instance, with arabica coffee grown at more than 1000 m above sea level. Given the importance of this constraint, researchers are insisting on the need to maintain incomes. Two main ways of achieving this have been suggested. The first consists in paying farmers for the environmental services rendered by their crops. This could be done through ecolabels such as "organic" or "Rainforest Alliance", which already exist on the market, through a national system of payment for carbon sequestration or, more locally, through direct payment from users of services, for instance hydroelectric dam operators paying farmers to protect soils against erosion. The other possibility is to diversify the crops grown and domesticate woody species, in the aim of making such operations profitable by creating or improving wood product marketing channels. For instance, timber serves to improve incomes among coffee producers when coffee prices fall in Central America. Likewise, palm wine plays a major role in ensuring the sustainability of cocoa-growing systems in the forests of Ivory Coast.

Certification: a strategy to be integrated into development programmes

At the end of the symposium, it was also recommended that the issue of biodiversity be associated with that of system productivity in studies and models. In effect, while it has been clearly established that agroforestry systems conserve and/or increase flora and fauna biodiversity, the impact of that biodiversity on the economic sustainability of such systems has yet to be determined. The beneficial effects of these agroforestry systems on a landscape scale, for instance their role in the connectivity between protected areas, also need to be explained more clearly. As regards existing biophysical results, compiling them in meta-databases would make it possible to organize the available information better, communicate about methodologies and results, apply those results more effectively, and identify research requirements. A modelling approach, perhaps coupled with an analysis of these metabases, would help to resolve the most crucial issues, such as the relations between crop yields and shading, or the impact of climate change on the functions of and the services rendered by the ecosystem. Lastly, certification is a strategy that could be integrated into the very heart of development programmes. However, this would mean improving the scientific bases of the biophysical and social criteria and indicators applied when attributing ecolabels.

* The symposium was organized by the Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), CIRAD, the International Center for Research in Agroforestry (ICRAF) and the University of Wales. It followed on from an initial symposium held in February 1999, also at CATIE, in Turrialba, Costa Rica.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=802

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

50th Anniversary at JULABO GmbH

23.10.2017 | Press release

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>