Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Determining teak durability in record time

13.11.2007
The market value of teak is continuing to rise. It is appreciated for its resistance to degrading agents, and also for its aesthetic and technological properties.

The teak currently on the market primarily comes from plantations in some thirty tropical countries. In effect, while global demand is continuing to grow, the natural forests in which teak originated are disappearing or are now protected. However, the natural durability of plantation teak can vary substantially from one tree to another. While wood from natural forests is in durability class 1 (highly durable) or 2 (durable), in some cases, plantation teak varies between class 1 and class 4 (slightly durable)*.

Laboratory studies of teak natural durability take 40 weeks to produce results. Researchers from CIRAD and its partners have managed to overcome this constraint, and developed a method that takes just a few minutes. Their brainwave was to correlate the analysis of teak natural durability with the variability of its chemical composition as revealed by near-infrared spectroscopy.

The first step for the researchers was to collect several hundred teak samples from trees of different ages, primarily from Togo, Ghana, Ivory Coast, Malaysia and Burma. The natural durability of wood depends on the age of the tree, its environment (soil, climate, geographical origin) and its genome. It is also closely linked to the nature of the chemical constituents (terpene and phenolic compounds, etc) that give it its natural resistance. The wood preservation laboratory subsequently determined the durability class of the samples based on the loss of mass caused by exposing them to wood-eating fungi (Antrodia sp. and Coriolus versicolor). Lastly, the researchers correlated the loss of mass for each sample with its near-infrared absorbency.

The database they compiled makes it possible to predict the natural durability class of teak samples within a few minutes. The wood sample - a core sample around 1.5 cm in diameter - is sliced and placed in front of the "eye" of the spectrometer, providing data that can be analysed using the database, which now contains the characteristics of more than 5000 teak samples from some ten countries, taken from plantations aged between 5 and 40 years, and from natural forests. It will be supplemented regularly with new samples, particularly from Asia, South America and Central America, where teak is a boom crop. Broadening the range of samples will help to improve the accuracy of durability predictions. The database could also provide geneticists with a new tool for use in breeding improved teak varieties.

* The natural durability of wood with respect to various degrading agents is assessed based on a European standard (EN350-1). As regards wood-eating fungi, durability is ranked from class 1 (highly durable) to class 5 (non-durable).

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=795

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>