Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Determining teak durability in record time

13.11.2007
The market value of teak is continuing to rise. It is appreciated for its resistance to degrading agents, and also for its aesthetic and technological properties.

The teak currently on the market primarily comes from plantations in some thirty tropical countries. In effect, while global demand is continuing to grow, the natural forests in which teak originated are disappearing or are now protected. However, the natural durability of plantation teak can vary substantially from one tree to another. While wood from natural forests is in durability class 1 (highly durable) or 2 (durable), in some cases, plantation teak varies between class 1 and class 4 (slightly durable)*.

Laboratory studies of teak natural durability take 40 weeks to produce results. Researchers from CIRAD and its partners have managed to overcome this constraint, and developed a method that takes just a few minutes. Their brainwave was to correlate the analysis of teak natural durability with the variability of its chemical composition as revealed by near-infrared spectroscopy.

The first step for the researchers was to collect several hundred teak samples from trees of different ages, primarily from Togo, Ghana, Ivory Coast, Malaysia and Burma. The natural durability of wood depends on the age of the tree, its environment (soil, climate, geographical origin) and its genome. It is also closely linked to the nature of the chemical constituents (terpene and phenolic compounds, etc) that give it its natural resistance. The wood preservation laboratory subsequently determined the durability class of the samples based on the loss of mass caused by exposing them to wood-eating fungi (Antrodia sp. and Coriolus versicolor). Lastly, the researchers correlated the loss of mass for each sample with its near-infrared absorbency.

The database they compiled makes it possible to predict the natural durability class of teak samples within a few minutes. The wood sample - a core sample around 1.5 cm in diameter - is sliced and placed in front of the "eye" of the spectrometer, providing data that can be analysed using the database, which now contains the characteristics of more than 5000 teak samples from some ten countries, taken from plantations aged between 5 and 40 years, and from natural forests. It will be supplemented regularly with new samples, particularly from Asia, South America and Central America, where teak is a boom crop. Broadening the range of samples will help to improve the accuracy of durability predictions. The database could also provide geneticists with a new tool for use in breeding improved teak varieties.

* The natural durability of wood with respect to various degrading agents is assessed based on a European standard (EN350-1). As regards wood-eating fungi, durability is ranked from class 1 (highly durable) to class 5 (non-durable).

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=795

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>