Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers warn about bacteria alterations in agricultural soils due to a chemical compound present in detergents

08.11.2007
Detergents are a pollutant agent which can be found frequently in agricultural soils. There are numerous channels for the passing of chemical components to the soils.

Two primary ways are the use of distilled water (both of domestic and industrial origin), and of fertilizers based out of biological mixtures. A study done by the Institute of Water and the Department of Microbiology at the University of Granada, directed by Dr. Maria del Mar Sánchez Peinado, stress the importance of controlling the contamination of our farm grounds. This is due to the increasing presence of linear alkyl benzene sulphonate, a chemical component whose active ingredient can be found in most detergents.

The research project, carried out by three professors, Clementina Pozo Llorente, Maria Belén Rodelas González, and Maria Victoria Martínez Toledo, was financed by the Ministry of Education. This study has proven to be an important advancement towards further understanding of agricultural soils as a receptor of these pollutant compounds, as well as the impact of such compounds on the microbial community, and its microbiotic role on agricultural soils with regards to LAS biodegradation processes. The field work of this study was conducted in the lowlands of Spain, researching LAS biotransformation capacity with regards to microbiota as well as its biotransformation kinetics.

The most utilized
At this moment LAS is the most used anionic surfactant in the worldwide detergent market. Its international consumption reaches values of 2,000 kt per year and by the year 2010 it is expected to reach values of up to 3,400 kt per year. However, the UGR scientists believe that its high global production, the need to use it and the toxicity of its initial forms and of some of its waste products “determine the need to control it in different environmental circumstances”.

This research work goes deeply, from chemical, microbiological and molecular techniques, into the impact of LAS in the structure, function and composition of the microbial community in the soil ecosystem. Likewise, the scientists have analyzed the biodegradation capacity of this pollutant in fields with regards to the microbial community combining techniques corresponding to different knowledge areas, such as microbiology, analytical chemistry and microbiology. With regards to agricultural soils, “the use of biological mud as a fertilizer and the great demand for water due to agricultural needs are the main means ways that LAS reaches the fields”. A unique ecosystem, where biological interactions and biogeochemical processes, associated to organic material degradation and mineral elements transformation for plant nutrition are especially intense.

The scientists of the University of Granada warn about the negative effects of LAS “LAS could significantly alter the metabolic activity of soils, therefore affecting their fertility”.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>