Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers warn about bacteria alterations in agricultural soils due to a chemical compound present in detergents

Detergents are a pollutant agent which can be found frequently in agricultural soils. There are numerous channels for the passing of chemical components to the soils.

Two primary ways are the use of distilled water (both of domestic and industrial origin), and of fertilizers based out of biological mixtures. A study done by the Institute of Water and the Department of Microbiology at the University of Granada, directed by Dr. Maria del Mar Sánchez Peinado, stress the importance of controlling the contamination of our farm grounds. This is due to the increasing presence of linear alkyl benzene sulphonate, a chemical component whose active ingredient can be found in most detergents.

The research project, carried out by three professors, Clementina Pozo Llorente, Maria Belén Rodelas González, and Maria Victoria Martínez Toledo, was financed by the Ministry of Education. This study has proven to be an important advancement towards further understanding of agricultural soils as a receptor of these pollutant compounds, as well as the impact of such compounds on the microbial community, and its microbiotic role on agricultural soils with regards to LAS biodegradation processes. The field work of this study was conducted in the lowlands of Spain, researching LAS biotransformation capacity with regards to microbiota as well as its biotransformation kinetics.

The most utilized
At this moment LAS is the most used anionic surfactant in the worldwide detergent market. Its international consumption reaches values of 2,000 kt per year and by the year 2010 it is expected to reach values of up to 3,400 kt per year. However, the UGR scientists believe that its high global production, the need to use it and the toxicity of its initial forms and of some of its waste products “determine the need to control it in different environmental circumstances”.

This research work goes deeply, from chemical, microbiological and molecular techniques, into the impact of LAS in the structure, function and composition of the microbial community in the soil ecosystem. Likewise, the scientists have analyzed the biodegradation capacity of this pollutant in fields with regards to the microbial community combining techniques corresponding to different knowledge areas, such as microbiology, analytical chemistry and microbiology. With regards to agricultural soils, “the use of biological mud as a fertilizer and the great demand for water due to agricultural needs are the main means ways that LAS reaches the fields”. A unique ecosystem, where biological interactions and biogeochemical processes, associated to organic material degradation and mineral elements transformation for plant nutrition are especially intense.

The scientists of the University of Granada warn about the negative effects of LAS “LAS could significantly alter the metabolic activity of soils, therefore affecting their fertility”.

Antonio Marín Ruiz | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>