Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers warn about bacteria alterations in agricultural soils due to a chemical compound present in detergents

08.11.2007
Detergents are a pollutant agent which can be found frequently in agricultural soils. There are numerous channels for the passing of chemical components to the soils.

Two primary ways are the use of distilled water (both of domestic and industrial origin), and of fertilizers based out of biological mixtures. A study done by the Institute of Water and the Department of Microbiology at the University of Granada, directed by Dr. Maria del Mar Sánchez Peinado, stress the importance of controlling the contamination of our farm grounds. This is due to the increasing presence of linear alkyl benzene sulphonate, a chemical component whose active ingredient can be found in most detergents.

The research project, carried out by three professors, Clementina Pozo Llorente, Maria Belén Rodelas González, and Maria Victoria Martínez Toledo, was financed by the Ministry of Education. This study has proven to be an important advancement towards further understanding of agricultural soils as a receptor of these pollutant compounds, as well as the impact of such compounds on the microbial community, and its microbiotic role on agricultural soils with regards to LAS biodegradation processes. The field work of this study was conducted in the lowlands of Spain, researching LAS biotransformation capacity with regards to microbiota as well as its biotransformation kinetics.

The most utilized
At this moment LAS is the most used anionic surfactant in the worldwide detergent market. Its international consumption reaches values of 2,000 kt per year and by the year 2010 it is expected to reach values of up to 3,400 kt per year. However, the UGR scientists believe that its high global production, the need to use it and the toxicity of its initial forms and of some of its waste products “determine the need to control it in different environmental circumstances”.

This research work goes deeply, from chemical, microbiological and molecular techniques, into the impact of LAS in the structure, function and composition of the microbial community in the soil ecosystem. Likewise, the scientists have analyzed the biodegradation capacity of this pollutant in fields with regards to the microbial community combining techniques corresponding to different knowledge areas, such as microbiology, analytical chemistry and microbiology. With regards to agricultural soils, “the use of biological mud as a fertilizer and the great demand for water due to agricultural needs are the main means ways that LAS reaches the fields”. A unique ecosystem, where biological interactions and biogeochemical processes, associated to organic material degradation and mineral elements transformation for plant nutrition are especially intense.

The scientists of the University of Granada warn about the negative effects of LAS “LAS could significantly alter the metabolic activity of soils, therefore affecting their fertility”.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>