Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'TRAP' preserves genetic properties of popular geranium

07.11.2007
Method streamlines collection while maintaining genetic diversity

Reseachers at The Ohio State University have demonstrated that Target Region Amplification Polymorphism, or TRAP, is an effective method for preserving the important genetic diversity of ornamental flower collections.

Pelargonium, commonly know as geranium, are some of the most popular flowers the world. So popular, in fact, that the Royal Horticultural Society listed more than 3,000 varieties of geranium in their 2004 distribution catalogue. Sold in hanging baskets, flats and decorative pots, geranium plants accounted for more than $206 million in wholesale revenue in the U.S. during 2004. Essential oils from some scented geraniums are finding new uses in perfumes and food flavorings.

There are over 280 documented species of Pelargonium. The interest in breeding has resulted in many novel and improved cultivars. According to Rose Palumbo, Department of Plant Pathology at The Ohio State University (OSU), ornamental plants like the geranium are often bred for their ornamental qualities rather than their ability to survive in diverse environments.

Palumbo and a team of researchers recently completed a study of Pelargonium grown at The Ornamental Plant Germplasm Center (OPGC) at Ohio State. OPGC collects heirloom cultivars, breeding lines and wild species.

Intending to find a way to preserve the genetic diversity of Pelagonium, the team tested a method known as Target Region Amplification Polymorphism, or TRAP. Palumbo explained, "The TRAP method uses molecuar markers targeted to a specific gene. Target sequences that have been generally successful in most plants tested the applicability of this method to OSU's geranium collection. Using TRAP allowed us to divide the population into groups of similiar species and groups known to share parents."

Palumbo continued, "TRAP has the advantage of producing a large number of markers through use of sequence information that is already available. Our first goal was to determine the feasibility of TRAP for the analysis of this large collection, so that in the future the most diverse genotypes may be retained. To achieve this goal, we first modified existing DNA extraction techniques to account for the high levels of phenolic compounds present in some Pelargonium species. Second, we evaluated the TRAP procedure using the DNA isolated from 46 accessions. Based on these results, the molecular analysis of the collection was completed, and the collection has decreased in size by approximately 25%. Continuing analyses should shrink the collection from approximately 800 plants to close to 200 plants by the end of this year."

Using the TRAP method will allow the OPGC to streamline their collection of geraniums into a much more manageable size. According to Palumbo, the smaller collection will be more efficient to maintain, while still providing the diverse genetic resources needed by breeders and researchers.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org
http://hortsci.ashspublications.org/cgi/content/abstract/42/5/1118/

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>