Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New evaporation model for water management


"Formulas from 1948 were being used."

Monthly evaporation models, important for water management, can be improved by studying the dispersion of rain for each month. This is one of the conclusions in the research project of Marieke de Groen. She will defend her thesis on Monday the 29th of April. De Groen: “The subject was neglected for a long time. The monthly models contained formulas from 1948.”

Our main source of food – the agriculture sector – is very dependant on the weather. To determine whether it is wiser to build a dam, irrigate, or make better use of rainwater, monthly models are made. Evaporation plays an important part in these models. De Groen: “If you have 100 mm of rainfall in one month, it could al have fallen on one day, or maybe during 10 days. This is quite important for plants; after all, you don’t water your own plants only once a month.”

In her research, De Groen made a distinction between transpiration and interception. Transpiration is when water is absorbed by the plant through the roots and then evaporates through the leaves. Interception is when part of the rain-water doesn’t reach the ground, but lands on plant leaves and evaporates from there. “Transpiration causes plants to grow, interception doesn’t. That is why the distinction is important,” says De Groen. “This is also important in climate models. The classical models fall short on two points: they don’t take the dispersion of the rainfall over the month into account and they don’t deal with the difference between transpiration and interception.”

De Groen worked at the international hydraulics institute IHE in Delft, which does research in Zimbabwe. During her research period in Zimbabwe, she realised that the occurrence of ‘rain days’ takes place along the lines of the so-called Markov-theory. This means that the probability for rain on a certain day is only dependant on the amount of rain the day before. The theory helped De Groen to create simple monthly models for transpiration and interception. “The classical models simplistically assume that all the rain fell at the beginning of the month and they drastically simplify the relationship between the amount of water in the ground and the amount used by plants,” says De Groen, “I will show that you can make better models by using different assumptions, and they apply world-wide.”

The method developed by De Groen is especially valuable for water managers and hydrologists that depend on a limited amount of data in a limited time frame to be able to make strategic management decisions.

Maarten van der Sanden | alphagalileo
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>