Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human-generated ozone will damage crops

30.10.2007
Could reduce production by more than 10 percent by 2100

An MIT study concludes that increasing levels of ozone due to the growing use of fossil fuels will damage global vegetation, resulting in serious costs to the world's economy.

The analysis, reported in the November issue of Energy Policy, focused on how three environmental changes (increases in temperature, carbon dioxide and ozone) associated with human activity will affect crops, pastures, and forests.

The research shows that increases in temperature and in carbon dioxide may actually benefit vegetation, especially in northern temperate regions. However, those benefits may be more than offset by the detrimental effects of increases in ozone, notably on crops.

Ozone is a form of oxygen that is an atmospheric pollutant at ground level.

The economic cost of the damage will be moderated by changes in land use and by agricultural trade, with some regions more able to adapt than others. But the overall economic consequences will be considerable. According to the analysis, if nothing is done, by 2100 the global value of crop production will fall by 10 to 12 percent.

“Even assuming that best-practice technology for controlling ozone is adopted worldwide, we see rapidly rising ozone concentrations in the coming decades,” said John M. Reilly, associate director of the MIT Joint Program on the Science and Policy of Global Change. “That result is both surprising and worrisome.”

The MIT study is novel. While others have looked at how changes in climate and in carbon dioxide concentrations may affect vegetation, Reilly and colleagues added to that mix changes in tropospheric ozone. Moreover, they looked at the combined impact of all three environmental “stressors” at once. (Changes in ecosystems and human health and other impacts of potential concern are outside the scope of this study.)

They performed their analysis using the MIT Integrated Global Systems Model, which combines linked state-of-the-art economic, climate, and agricultural computer models to project emissions of greenhouse gases and ozone precursors based on human activity and natural systems.
EXPECTED AND UNEXPECTED FINDINGS

Results for the impacts of climate change and rising carbon dioxide concentrations (assuming business as usual, with no emissions
restrictions) brought few surprises. For example, the estimated carbon dioxide and temperature increases would benefit vegetation in much of the world.

The effects of ozone are decidedly different.

Without emissions restrictions, growing fuel combustion worldwide will push global average ozone up 50 percent by 2100. That increase will have a disproportionately large impact on vegetation because ozone concentrations in many locations will rise above the critical level where adverse effects are observed in plants and ecosystems.

Crops are hardest hit. Model predictions show that ozone levels tend to be highest in regions where crops are grown. In addition, crops are particularly sensitive to ozone, in part because they are fertilized. “When crops are fertilized, their stomata open up, and they suck in more air. And the more air they suck in, the more ozone damage occurs,” said Reilly. “It's a little like going out and exercising really hard on a high-ozone day.”
What is the net effect of the three environmental changes? Without emissions restrictions, yields from forests and pastures decline slightly or even increase because of the climate and carbon dioxide effects. But crop yields fall by nearly 40 percent worldwide.

However, those yield losses do not translate directly into economic losses. According to the economic model, the world adapts by allocating more land to crops. That adaptation, however, comes at a cost. The use of additional resources brings a global economic loss of 10-12 percent of the total value of crop production.
THE REGIONAL VIEW

Global estimates do not tell the whole story, however, as regional impacts vary significantly.

For example, northern temperate regions generally benefit from climate change because higher temperatures extend their growing season. However, the crop losses associated with high ozone concentrations will be significant. In contrast, the tropics, already warm, do not benefit from further warming, but they are not as hard hit by ozone damage because ozone-precursor emissions are lower in the tropics.

The net result: regions such as the United States, China, and Europe would need to import food, and supplying those imports would be a benefit to tropical countries.

Reilly warns that the study's climate projections may be overly optimistic. The researchers are now incorporating a more realistic climate simulation into their analysis.

Reilly's colleagues are from MIT and the Marine Biological Laboratory. The research was supported by the Department of Energy, the Environmental Protection Agency, the National Science Foundation, NASA, the National Oceanographic and Atmospheric Administration, and the MIT Joint Program on the Science and Policy of Global Change.

It is part of the MIT Energy Initiative (MITEI), an Institute-wide initiative designed to help transform the global energy system to meet the challenges of the future. MITEI includes research, education, campus energy management and outreach activities, an interdisciplinary approach that covers all areas of energy supply and demand, security and environmental impact. For more information, please visit web.mit.edu/mitei/.

Written by Nancy Stauffer, MIT Energy Initiative

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>