Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fractionation technology developed by VTT increases diverse uses of oats

VTT Technical Research Centre of Finland has, in collaboration with Agrifood Research Finland (MTT), developed a technology to efficiently separate the health-promoting beta-glucan from oats.
The technology can also be used to produce high-quality oat protein, starch and lipid fractions. The new fractions increase the possibilities to use oats in the food, cosmetics and pharmaceutical industries.

The blood cholesterol lowering effects of beta-glucan, the soluble oat fibre, is well known. Still, the usage of â-glucans in industry is relatively low. One reason for this is the lack of â-glucan-rich fractions that are feasible in food applications.

The dry processing method developed by VTT is based on fractionation of fat-free oats using milling and classification technology. In the first processing stage, the fat is removed form oats using supercritical extraction technology developed by MTT. This technology is previously used to remove pesticides from rice and to extract berry oils from seeds. Milling and classifications of this material results in three types of oat fractions: The main product is a coarse, light-coloured bran, with a beta-glucan content of approximately 40 per cent; defatted starch-protein flour; and small amounts of nearly white, extremely light fraction with a beta-glucan content of over 50 per cent. Traditionally, dry fractionation methods for oats have resulted in oat bran concentrates with only slightly over 20 per cent beta-glucan content.

The developed technology has several benefits. As a dry process, it is economically far more feasible than wet processes. Until now, the wet processes have been the only option for production of fractions with such high beta-glucan content. With the used extraction method oat fats can be efficiently removed, increasing the self-life of the fractions and decreasing the well-known rancidity problems often related to oat products. Due to the gentle processing method, both the beta-glucans and other bioactive compounds in oats remain in their natural state.

Oat fractions produced with the new method are well-suited, for instance, for beverages, dairy applications, baking, snack products and fermented products. The cosmetics and pharmaceutical industries can also utilise them.

VTT has developed special know-how in dry milling and classification technology of plant-based food raw materials for years. The dry milling method is suitable for processing of versatile plant raw materials and plant-based side-streams. The technology offers the opportunity to isolate fractions from plant raw materials that can, for instance, be used to deliver improved taste and additional health benefits into products.

The development of oat fractionation technology has been carried out during years 2004-2007 and has been financed by the Ministry of Forestry and Agriculture. The management group of the research project included several Finnish companies.

Approximately 25 million tonnes of oats is produced annually worldwide.
Half of the production is used as cattle feed and only a quarter for food, seed and other products. Due to the health-promoting effects of soluble beta-glucan fibre in oats, oats have a string position as a raw material for functional foods.

Further information:

Anu Kaukovirta-Norja
Technology Manager
tel. +358 20 722 7117

Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Anu Kaukovirta-Norja | VTT
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>