Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fractionation technology developed by VTT increases diverse uses of oats

29.10.2007
VTT Technical Research Centre of Finland has, in collaboration with Agrifood Research Finland (MTT), developed a technology to efficiently separate the health-promoting beta-glucan from oats.
The technology can also be used to produce high-quality oat protein, starch and lipid fractions. The new fractions increase the possibilities to use oats in the food, cosmetics and pharmaceutical industries.

The blood cholesterol lowering effects of beta-glucan, the soluble oat fibre, is well known. Still, the usage of â-glucans in industry is relatively low. One reason for this is the lack of â-glucan-rich fractions that are feasible in food applications.

The dry processing method developed by VTT is based on fractionation of fat-free oats using milling and classification technology. In the first processing stage, the fat is removed form oats using supercritical extraction technology developed by MTT. This technology is previously used to remove pesticides from rice and to extract berry oils from seeds. Milling and classifications of this material results in three types of oat fractions: The main product is a coarse, light-coloured bran, with a beta-glucan content of approximately 40 per cent; defatted starch-protein flour; and small amounts of nearly white, extremely light fraction with a beta-glucan content of over 50 per cent. Traditionally, dry fractionation methods for oats have resulted in oat bran concentrates with only slightly over 20 per cent beta-glucan content.

The developed technology has several benefits. As a dry process, it is economically far more feasible than wet processes. Until now, the wet processes have been the only option for production of fractions with such high beta-glucan content. With the used extraction method oat fats can be efficiently removed, increasing the self-life of the fractions and decreasing the well-known rancidity problems often related to oat products. Due to the gentle processing method, both the beta-glucans and other bioactive compounds in oats remain in their natural state.

Oat fractions produced with the new method are well-suited, for instance, for beverages, dairy applications, baking, snack products and fermented products. The cosmetics and pharmaceutical industries can also utilise them.

VTT has developed special know-how in dry milling and classification technology of plant-based food raw materials for years. The dry milling method is suitable for processing of versatile plant raw materials and plant-based side-streams. The technology offers the opportunity to isolate fractions from plant raw materials that can, for instance, be used to deliver improved taste and additional health benefits into products.

The development of oat fractionation technology has been carried out during years 2004-2007 and has been financed by the Ministry of Forestry and Agriculture. The management group of the research project included several Finnish companies.

Approximately 25 million tonnes of oats is produced annually worldwide.
Half of the production is used as cattle feed and only a quarter for food, seed and other products. Due to the health-promoting effects of soluble beta-glucan fibre in oats, oats have a string position as a raw material for functional foods.

Further information:

VTT
Anu Kaukovirta-Norja
Technology Manager
tel. +358 20 722 7117
anu.kaukovirta-norja@vtt.fi

Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Anu Kaukovirta-Norja | VTT
Further information:
http://www.vtt.fi/?lang=en

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>