Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If corn is biofuels king, tropical maize may be emperor

17.10.2007
When University of Illinois crop scientist Fred Below began growing tropical maize, the form of corn grown in the tropics, he was looking for novel genes for the utilization of nitrogen fertilizer and was hoping to discover information that could be useful to American corn producers.

Now, however, it appears that maize itself may prove to be the ultimate U.S. biofuels crop.

Early research results show that tropical maize, when grown in the Midwest, requires few crop inputs such as nitrogen fertilizer, chiefly because it does not produce any ears. It also is easier for farmers to integrate into their current operations than some other dedicated energy crops because it can be easily rotated with corn or soybeans, and can be planted, cultivated and harvested with the same equipment U.S. farmers already have. Finally, tropical maize stalks are believed to require less processing than corn grain, corn stover, switchgrass, Miscanthus giganteus and the scores of other plants now being studied for biofuel production.

What it does produce, straight from the field with no processing, is 25 percent or more sugar -- mostly sucrose, fructose and glucose.

"Corn is a short-day plant, so when we grow tropical maize here in the Midwest the long summer days delay flowering, which causes the plant to grow very tall and produce few or no ears," says Below. Without ears, these plants concentrate sugars in their stalks, he adds. Those sugars could have a dramatic affect on Midwestern production of ethanol and other biofuels.

According to Below, "Midwestern-grown tropical maize easily grows 14 or 15 feet tall compared to the 7-1/2 feet height that is average for conventional hybrid corn. It is all in these tall stalks," Below explains. "In our early trials, we are finding that these plants build up to a level of 25 percent or higher of sugar in their stalks.

This differs from conventional corn and other crops being grown for biofuels in that the starch found in corn grain and the cellulose in switchgrass, corn stover and other biofuel crops must be treated with enzymes to convert them into sugars that can be then fermented into alcohols such as ethanol.

Storing simple sugars also is more cost-effective for the plant, because it takes a lot of energy to make the complex starches, proteins, and oils present in corn grain. This energy savings per plant could result in more total energy per acre with topical maize, since it produces no grain.

"In terms of biofuel production, tropical maize could be considered the 'Sugarcane of the Midwest',"Below said. "The tropical maize we're growing here at the University of Illinois is very lush, very tall, and very full of sugar."

He added that his early trials also show that tropical maize requires much less nitrogen fertilizer than conventional corn, and that the stalks actually accumulate more sugar when less nitrogen is available. Nitrogen fertilizer is one of major costs of growing corn.

He explained that sugarcane used in Brazil to make ethanol is desirable for the same reason: it produces lots of sugar without a high requirement for nitrogen fertilizer, and this sugar can be fermented to alcohol without the middle steps required by high-starch and cellulosic crops. But sugarcane canít be grown in the Midwest.

The tall stalks of tropical maize are so full of sugar that producers growing it for biofuel production will be able to supply a raw material at least one step closer to being turned into fuel than are ears of corn.

"And growing tropical maize doesn't break the farmers' rotation. You can grow tropical maize for one year and then go back to conventional corn or soybeans in subsequent years," Below said. "Miscanthus, on the other hand, is thought to need a three-year growth cycle between initial planting and harvest and then your land is in Miscanthus. To return to planting corn or soybean necessitates removing the Miscanthus rhizomes.

Below is studying topical maize along with doctoral candidate Mike Vincent and postdoctoral research associate Matias Ruffo, and in conjunction with U of I Associate Professor Stephen Moose. This latest discovery of high sugar yields from tropical maize became apparent through cooperative work between Below and Moose to characterize genetic variation in response to nitrogen fertilizers.

Currently supported by the National Science Foundation, these studies are a key element to developing maize hybrids with improved nitrogen use efficiency. Both Below and Moose are members of Illinois Maize Breeding and Genetics Laboratory (http://imbgl.cropsci.uiuc.edu/tradition.html), which has a long history of conducting research that identifies new uses for the maize crop.

Moose now directs one of the longest-running plant genetics experiments in the world, in which more than a century of selective breeding has been applied to alter carbon and nitrogen accumulation in the maize plant. Continued collaboration between Below and Moose will investigate whether materials from these long term selection experiments will further enhance sugar yields from tropical maize.

Marilyn Upah Bant | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>