Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Battling virus disease of watermelon with bottlegourds

05.10.2007
New help may be on the way for beleaguered growers of popular cucurbit crops like cucumbers and watermelons

New help may be on the way for beleaguered growers of popular cucurbit crops like cucumbers and watermelons. Many varieties of the widely grown bottlegourd (Lagenaria siceraria) appear to have resistance to Zucchini yellow mosaic virus (ZYMV), a scourge of commercial cucurbits that includes pumpkins, squashes and other kinds of melons, including watermelons. ZYMV infects cucurbits throughout North America and in other parts of world, and is a particular concern to U.S. producers of watermelon, a crop valued at $435 million in 2006.

Two scientists with the Agricultural Research Service (ARS), which is the chief intramural scientific research agency of the U.S. Department of Agriculture (USDA), are screening bottlegourds for genetic resistance to ZYMV. Plant pathologist Kai-Shu Ling and geneticist Amnon Levi, who work at the U.S. Vegetable Laboratory in Charleston, S.C., have been searching for effective and environmentally friendly techniques to control watermelon pathogens and pests.

Ling and Levi obtained seeds for 190 bottlegourd accessions that were collected from different parts of the world and kept at the ARS Plant Genetic Resources Conservation Unit in Griffin, Ga. They raised the seeds in their Charleston greenhouses, and then inoculated the bottlegourd plants with ZYMV and evaluated how well they resisted the virus.

To their surprise, 36 accessions of the 190 screened—33 from India alone—were completely resistant to ZYMV infection, and another 64 accessions were partially resistant. They also found that ZYMV resistance is heritable in crosses between different bottlegourd accessions, enabling the development of bottlegourd varieties with enhanced virus resistance.

Popular watermelon cultivars could be grafted onto bottlegourd rootstocks with enhanced resistance to bolster the watermelons’ ability to resist ZYMV. Some watermelon growers have already been experimenting with grafting watermelon on bottlegourd rootstocks to control soilborne diseases and to enhance fruit production and quality.

Victor van Buchem | EurekAlert!
Further information:
http://hortsci.ashspublications.org/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>