Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The University of Navarra has installed a greenhouse in order to study the impact of climate change on plants

04.10.2007
The University of Navarra has installed a thermal gradient greenhouse in order to study the impact of climate change on plants.

This is a pioneering methodology for studying the simultaneous effect of increased CO2 and ambient temperature. The research project, which will be undertaken by researchers from the area of Plant Biology of the University, could become a reference for later scientific studies in this area.

These studies, financed by the Spanish Ministry of Education and Science, the University Foundation of Navarra and the Foundation Caja Navarra, have already obtained their first results. “We have discovered that plants respond to enrichment of atmospheric CO2 with increased growth. This will imply an increase in the productivity of food crops and of plant growth in general,” explained Prof. Juan José Irigoyen, leader of the research project.

Nevertheless, after prolonged growth in an environment with increased CO2, plants become acclimatized and throttle back their growth. This could be due to the fact that in the new conditions produced by climate change, limiting factors appear which reduce plant growth, such as the availability of nutrients in the soil. In addition, the changes in other parameters associated with an increase in CO2 and with climate change in general, such as an increase in temperature and a reduction in rainfall, can reduce or even eliminate these beneficial effects.

Studies in forage crops, rapeseed and grapevines

The research team is made up of the professors Juan José Irigoyen and Manuel Sánchez-Díaz, of the University of Navarra; Fermín Morales, of the Spanish High Council of Scientific Research; the doctoral student Álvaro Sanz and the research technicians Amadeo Urdiáin and Mónica Oyarzun. Up to now, the team has focused its studies on forage crops such as alfalfa. These species can grow in nitrogen-poor soils; this element, when added to the soil as a fertilizer, contributes to the greenhouse effect and to pollution. However, the team is currently looking to expand its research area to other crops, such as rapeseed and grapevines.

In the case of climate change, induced in large part by the increase in atmospheric CO2, the team has undertaken studies in controlled conditions, with cameras to record growth, and currently with thermal gradient greenhouses, which permit undertaking studies on specific types of climate change. These are facilities that are similar to greenhouses, but which permit us to simulate an environment with increased CO2 and a simultaneous increase in temperature. According to this professor, “the conclusions will contribute to understand the response of plants to this kind of climate change, as well as to propose cultivation strategies for these plants which will help farmers to adjust to the new climate conditions.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1447&hizk=I

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>