Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The University of Navarra has installed a greenhouse in order to study the impact of climate change on plants

04.10.2007
The University of Navarra has installed a thermal gradient greenhouse in order to study the impact of climate change on plants.

This is a pioneering methodology for studying the simultaneous effect of increased CO2 and ambient temperature. The research project, which will be undertaken by researchers from the area of Plant Biology of the University, could become a reference for later scientific studies in this area.

These studies, financed by the Spanish Ministry of Education and Science, the University Foundation of Navarra and the Foundation Caja Navarra, have already obtained their first results. “We have discovered that plants respond to enrichment of atmospheric CO2 with increased growth. This will imply an increase in the productivity of food crops and of plant growth in general,” explained Prof. Juan José Irigoyen, leader of the research project.

Nevertheless, after prolonged growth in an environment with increased CO2, plants become acclimatized and throttle back their growth. This could be due to the fact that in the new conditions produced by climate change, limiting factors appear which reduce plant growth, such as the availability of nutrients in the soil. In addition, the changes in other parameters associated with an increase in CO2 and with climate change in general, such as an increase in temperature and a reduction in rainfall, can reduce or even eliminate these beneficial effects.

Studies in forage crops, rapeseed and grapevines

The research team is made up of the professors Juan José Irigoyen and Manuel Sánchez-Díaz, of the University of Navarra; Fermín Morales, of the Spanish High Council of Scientific Research; the doctoral student Álvaro Sanz and the research technicians Amadeo Urdiáin and Mónica Oyarzun. Up to now, the team has focused its studies on forage crops such as alfalfa. These species can grow in nitrogen-poor soils; this element, when added to the soil as a fertilizer, contributes to the greenhouse effect and to pollution. However, the team is currently looking to expand its research area to other crops, such as rapeseed and grapevines.

In the case of climate change, induced in large part by the increase in atmospheric CO2, the team has undertaken studies in controlled conditions, with cameras to record growth, and currently with thermal gradient greenhouses, which permit undertaking studies on specific types of climate change. These are facilities that are similar to greenhouses, but which permit us to simulate an environment with increased CO2 and a simultaneous increase in temperature. According to this professor, “the conclusions will contribute to understand the response of plants to this kind of climate change, as well as to propose cultivation strategies for these plants which will help farmers to adjust to the new climate conditions.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1447&hizk=I

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>