Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The University of Navarra has installed a greenhouse in order to study the impact of climate change on plants

The University of Navarra has installed a thermal gradient greenhouse in order to study the impact of climate change on plants.

This is a pioneering methodology for studying the simultaneous effect of increased CO2 and ambient temperature. The research project, which will be undertaken by researchers from the area of Plant Biology of the University, could become a reference for later scientific studies in this area.

These studies, financed by the Spanish Ministry of Education and Science, the University Foundation of Navarra and the Foundation Caja Navarra, have already obtained their first results. “We have discovered that plants respond to enrichment of atmospheric CO2 with increased growth. This will imply an increase in the productivity of food crops and of plant growth in general,” explained Prof. Juan José Irigoyen, leader of the research project.

Nevertheless, after prolonged growth in an environment with increased CO2, plants become acclimatized and throttle back their growth. This could be due to the fact that in the new conditions produced by climate change, limiting factors appear which reduce plant growth, such as the availability of nutrients in the soil. In addition, the changes in other parameters associated with an increase in CO2 and with climate change in general, such as an increase in temperature and a reduction in rainfall, can reduce or even eliminate these beneficial effects.

Studies in forage crops, rapeseed and grapevines

The research team is made up of the professors Juan José Irigoyen and Manuel Sánchez-Díaz, of the University of Navarra; Fermín Morales, of the Spanish High Council of Scientific Research; the doctoral student Álvaro Sanz and the research technicians Amadeo Urdiáin and Mónica Oyarzun. Up to now, the team has focused its studies on forage crops such as alfalfa. These species can grow in nitrogen-poor soils; this element, when added to the soil as a fertilizer, contributes to the greenhouse effect and to pollution. However, the team is currently looking to expand its research area to other crops, such as rapeseed and grapevines.

In the case of climate change, induced in large part by the increase in atmospheric CO2, the team has undertaken studies in controlled conditions, with cameras to record growth, and currently with thermal gradient greenhouses, which permit undertaking studies on specific types of climate change. These are facilities that are similar to greenhouses, but which permit us to simulate an environment with increased CO2 and a simultaneous increase in temperature. According to this professor, “the conclusions will contribute to understand the response of plants to this kind of climate change, as well as to propose cultivation strategies for these plants which will help farmers to adjust to the new climate conditions.

Irati Kortabitarte | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>