Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover forests of endangered tropical kelp

28.09.2007
Important implications for biodiversity, climate change

A research team led by San Jose State University and the University of California, Santa Barbara has discovered forests of a species of kelp previously thought endangered or extinct in deep waters near the Galapagos Islands.

The discovery has important implications for biodiversity and the resilience of tropical marine systems to climate change. The research paper describing the discovery is published in this week’s on-line issue of the Proceedings of the National Academy of Sciences.

“The ecosystems that form in these cold, deep pockets beneath warm tropical waters look more like their cousins in California than the tropical reefs just 200 feet above,” said co-author Brian Kinlan, a researcher with UC Santa Barbara’s Marine Science Institute. “It is very similar to what we see when we climb a high mountain. For example, high alpine country in California looks more like Alaska.”

Kinlan and Michael Graham, associate professor at SJSU, began by developing a mathematical model designed to predict likely habitat for the kelp, Eisenia galapagensis, based on information from satellites and oceanographic instruments on conditions including light, depth and nutrient availability. The premise of the model was developed by collaborator Louis Druehl, of the Bamfield Marine Science Centre, who surmised it was possible to create a predictive model for locating kelp forests rather than focusing on the limited details available from rare field observations.

The research team tested the model by traveling to the predicted habitat, where they searched for the kelp. Scuba divers -- including students from CSU Monterey Bay, CSU East Bay and UC Davis -- found the kelp forests from 40 to 200 feet below the surface, making the mission a success. The students conducted their surveys alongside the famed Amblyrhynchus christatus, the world's only seagoing iguanas. (High-resolution color photos are available.)

The mission's success has three major implications. First, the World Conservation Union, which recently added Eisenia galapagensis to its global database of threatened species, may reconsider that action. Second, the model may find other marine life presumed endangered or rare but actually hidden beneath the ocean's surface. The model does this by pinpointing unexpected places to search. In this case, the model correctly predicted that deep waters in the tropics could harbor kelp forests more commonly associated with temperate regions such as central California. The model identified nearly 10,000 square miles of similar unexpected cold spots in deep tropical waters worldwide.

The third implication of the research is that marine biodiversity may be more tolerant of climate change than presumed. Graham compares his team's kelp forests to the underwater hydrothermal vents discovered off South Africa in 1977. Scientists were surprised to find thriving ecosystems near those vents in water previously considered too deep and dark to harbor complex communities. Graham theorizes the kelp forests his team discovered may reveal a similar wealth of plant and animal life. So while global warming may heat coral reefs and alter life there, marine communities may continue to thrive in kelp forests deep beneath the surface, where cooler nutrient-rich waters are less affected by surface warming.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>