Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover forests of endangered tropical kelp

28.09.2007
Important implications for biodiversity, climate change

A research team led by San Jose State University and the University of California, Santa Barbara has discovered forests of a species of kelp previously thought endangered or extinct in deep waters near the Galapagos Islands.

The discovery has important implications for biodiversity and the resilience of tropical marine systems to climate change. The research paper describing the discovery is published in this week’s on-line issue of the Proceedings of the National Academy of Sciences.

“The ecosystems that form in these cold, deep pockets beneath warm tropical waters look more like their cousins in California than the tropical reefs just 200 feet above,” said co-author Brian Kinlan, a researcher with UC Santa Barbara’s Marine Science Institute. “It is very similar to what we see when we climb a high mountain. For example, high alpine country in California looks more like Alaska.”

Kinlan and Michael Graham, associate professor at SJSU, began by developing a mathematical model designed to predict likely habitat for the kelp, Eisenia galapagensis, based on information from satellites and oceanographic instruments on conditions including light, depth and nutrient availability. The premise of the model was developed by collaborator Louis Druehl, of the Bamfield Marine Science Centre, who surmised it was possible to create a predictive model for locating kelp forests rather than focusing on the limited details available from rare field observations.

The research team tested the model by traveling to the predicted habitat, where they searched for the kelp. Scuba divers -- including students from CSU Monterey Bay, CSU East Bay and UC Davis -- found the kelp forests from 40 to 200 feet below the surface, making the mission a success. The students conducted their surveys alongside the famed Amblyrhynchus christatus, the world's only seagoing iguanas. (High-resolution color photos are available.)

The mission's success has three major implications. First, the World Conservation Union, which recently added Eisenia galapagensis to its global database of threatened species, may reconsider that action. Second, the model may find other marine life presumed endangered or rare but actually hidden beneath the ocean's surface. The model does this by pinpointing unexpected places to search. In this case, the model correctly predicted that deep waters in the tropics could harbor kelp forests more commonly associated with temperate regions such as central California. The model identified nearly 10,000 square miles of similar unexpected cold spots in deep tropical waters worldwide.

The third implication of the research is that marine biodiversity may be more tolerant of climate change than presumed. Graham compares his team's kelp forests to the underwater hydrothermal vents discovered off South Africa in 1977. Scientists were surprised to find thriving ecosystems near those vents in water previously considered too deep and dark to harbor complex communities. Graham theorizes the kelp forests his team discovered may reveal a similar wealth of plant and animal life. So while global warming may heat coral reefs and alter life there, marine communities may continue to thrive in kelp forests deep beneath the surface, where cooler nutrient-rich waters are less affected by surface warming.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>