Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clever plants chat over their own network

25.09.2007
Recent research from Vidi researcher Josef Stuefer at the Radboud University Nijmegen reveals that plants have their own chat systems that they can use to warn each other.

Therefore plants are not boring and passive organisms that just stand there waiting to be cut off or eaten up. Many plants form internal communications networks and are able to exchange information efficiently.

Chat network

Many herbal plants such as strawberry, clover, reed and ground elder naturally form networks. Individual plants remain connected with each other for a certain period of time by means of runners. These connections enable the plants to share information with each other via internal channels. They are therefore very similar to computer networks. But what do plants want to chat to each other about?

Recently Stuefer and his colleagues were the first to demonstrate that clover plants warn each other via the network links if enemies are nearby. If one of the plants is attacked by caterpillars, the other members of the network are warned via an internal signal. Once warned, the intact plants strengthen their chemical and mechanical resistance so that they are less attractive for advancing caterpillars. Thanks to this early warning system, the plants can stay one step ahead of their attackers. Experimental research has revealed that this significantly limits the damage to the plants.

Viruses

However there are two sides to the coin. That is not just the case for the Internet but also for plants. It appears that plant viruses can use the infrastructure present to rapidly spread through the connected plants. The infection of one plant therefore leads to the infection of all plants within the network.

This research clearly reveals that the general image of plants is a poor reflection of reality. Who had now suspected that the majority of plants around us are constantly internetting?

This research is part of the Vidi project 'Plant Intranets. Costs, benefits, & risks of communication pathways in clonal plant networks' that was funded by NWO and the Radboud University Nijmegen.

Dr Josef Stuefer | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_76QJ5P_Eng

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>