Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yam bean a nearly forgotten crop

18.09.2007
Interbreeding may produce quality food source for resource-poor countries

The Yam bean originated where the Andes meet the Amazon and is locally grown in South and Central America, South Asia, East Asia and the Pacific. It is produced in three species which are called the Amazonian, Mexican and Andean. Interbreeding of the bean has resulted in fertile and stable hybrids. This gives it potential to be reclassified as a single species, provide high quality food production and offer a sustainable cropping system that has been needed in Africa.

Researchers believe they have discovered a protein-rich starch staple in the yam bean in Peru. They were previously considered a root vegetable due to the high water content; however this ‘Chuin’ type has lower water content. Families living in the area have been producing it as flour. The crop has extremely high seed production, but its seeds contain high concentrations of rotenone. This toxic compound has been used for reducing fish populations and parasitic mites on poultry. Seeds are never consumed since they are mildly toxic to humans and other mammals. If the rotenone was removed from the seeds, they could provide a strong protein source as well as seed oil profitable in the food industry.

Séraphin Zanklan, a scientist at Centre Songhai in Porto-Novo (Benin), has investigated the yam bean for its potential to grow and produce food under West African conditions. The study was funded by a scholarship from the German Academic Exchange Service (DAAD). Thirty-four yam genotypes were grown with and without flower removal at one droughty location and one irrigated location. Of the 33 traits that were measured, nearly all showed large genetic variation. This and the easy spreading of its seeds, make the crops very desirable to breeders. Results from the study will be published in the July-August 2007 issue of Crop Science.

The study identified genotypes with high storage root production. Flower removal increased storage root production by 50 to 100%. Several yam bean genotypes showed very low reduction in storage root and seed production under drought stressed conditions. As expected, the storage roots did show high protein and starch contents. They have as much as three to five times more protein than potatoes or yams. Most importantly, it was found that storage roots can be processed into ‘yam bean gari.’ This is similar to the current staple of West Africa, ‘cassava gari,’ a granular flour.

The bean could make a significant contribution to the improvement of food support, especially where resources are poor. The research is ongoing at the International Potato Center, which has a mandate for the bean in the frame of Andean Root and Tuber Crops. Further evaluation is needed on the range of yam bean variations under different conditions. More information on where they can be grown, their agronomic potential and genetic diversity is important to determine the types of breeding programs necessary for yam beans.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>