Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shelf-Life Science: Good Genes Could Stop Broccoli Going Bad

10.04.2002


Broccoli is one of western Europe`s most popular and widely consumed vegetables. However, its shelf life is restricted to about 5 days at room temperature, making distribution and storage of the product difficult. Recent research presented today at the Society for Experimental Biology conference in Swansea could help us understand the genetics of this situation and may even lead to `supervarieties` of broccoli.



The popularity of broccoli is on the increase and it is used increasingly in value added products such as frozen foods and ready meals. In the UK, broccoli available in the summer is produced domestically. However, during the winter months the majority of the broccoli available in supermarkets has made the long journey from Spain - not an easy thing when the product itself has a shelf life of only 5 days.

Evy Mathas, a PhD student at Horticultural Research International, Wellesbourne, is attempting to understand this relatively rapid deterioration - research which may lead to improved commercial varieties. Senescence - the deterioration of the product - is characterised by a yellowing of the broccoli floret and a loss of water. In order to study this process, Ms Mathas carried out an extensive field trial in 2001, growing different varieties of broccoli and carrying out a detailed analysis on each post-harvest day. She has found a dramatic difference between these varieties. Some senesce in as little as 2 days, whilst others remain edible for 4 at room temperature. Her biochemical and molecular analysis has shown that this senescence is a result of a rather rapid loss of chlorophyll and a slight loss of protein from the floret.


Gene expression work using gene probes for known senescence causing genes has shown that the expression of these genes also increases as the product deteriorates, suggesting a genetic basis for senescence. The expression of these genes occurs earlier and is stronger in broccoli varieties with a short shelf life. Ms Mathas now hopes to identify the quantitative trait loci (QTL) for these genes - in essence, the region on the broccoli chromosome where the senescence-causing genes are found - allowing a physical map of the chromosome to be built up. The next step would be to identify the specific genes involved. Potentially, this could allow modification of these genes enabling us to develop `supervarieties` of broccoli.

"This research isn`t simply limited to broccoli. We can also learn a lot about physiology and senescence in general and may be able to apply these findings in other types of vegetable or crop".

Jenny Gimpel | alphagalileo

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>