Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shelf-Life Science: Good Genes Could Stop Broccoli Going Bad

10.04.2002


Broccoli is one of western Europe`s most popular and widely consumed vegetables. However, its shelf life is restricted to about 5 days at room temperature, making distribution and storage of the product difficult. Recent research presented today at the Society for Experimental Biology conference in Swansea could help us understand the genetics of this situation and may even lead to `supervarieties` of broccoli.



The popularity of broccoli is on the increase and it is used increasingly in value added products such as frozen foods and ready meals. In the UK, broccoli available in the summer is produced domestically. However, during the winter months the majority of the broccoli available in supermarkets has made the long journey from Spain - not an easy thing when the product itself has a shelf life of only 5 days.

Evy Mathas, a PhD student at Horticultural Research International, Wellesbourne, is attempting to understand this relatively rapid deterioration - research which may lead to improved commercial varieties. Senescence - the deterioration of the product - is characterised by a yellowing of the broccoli floret and a loss of water. In order to study this process, Ms Mathas carried out an extensive field trial in 2001, growing different varieties of broccoli and carrying out a detailed analysis on each post-harvest day. She has found a dramatic difference between these varieties. Some senesce in as little as 2 days, whilst others remain edible for 4 at room temperature. Her biochemical and molecular analysis has shown that this senescence is a result of a rather rapid loss of chlorophyll and a slight loss of protein from the floret.


Gene expression work using gene probes for known senescence causing genes has shown that the expression of these genes also increases as the product deteriorates, suggesting a genetic basis for senescence. The expression of these genes occurs earlier and is stronger in broccoli varieties with a short shelf life. Ms Mathas now hopes to identify the quantitative trait loci (QTL) for these genes - in essence, the region on the broccoli chromosome where the senescence-causing genes are found - allowing a physical map of the chromosome to be built up. The next step would be to identify the specific genes involved. Potentially, this could allow modification of these genes enabling us to develop `supervarieties` of broccoli.

"This research isn`t simply limited to broccoli. We can also learn a lot about physiology and senescence in general and may be able to apply these findings in other types of vegetable or crop".

Jenny Gimpel | alphagalileo

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>