Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Maximize Biofuel Potential, Researchers Look for Sorghum’s ‘Sweet Spot’

14.09.2007
Picture this – IV (intravenous) lines in a sorghum field. It's not as far-fetched as it sounds. It's one way that scientists at the Texas Agricultural Experiment Station are researching crops that may contribute to the biofuel revolution.

In Beaumont, Dr. Lee Tarpley, plant physiologist, and College Station colleague, Dr. Don Vietor, professor of crop physiology, have focused their research on sweet sorghum.

While sweet sorghum and sugarcane are close relatives, the researchers have shown that the two species have different ways of moving and storing sugar. Tracer sucrose is inserted into growing plants, using a system similar to an IV. Once the sucrose is inside the plants, the researchers can track the movement and distribution.

They found that, due to the plant's physiology, sweet sorghum appears to be more efficient in reusing the stored sugar to support growth of other parts of the plant. The mechanisms in sugarcane, however, allow it to accumulate very high levels of sucrose.

"The differences are critical, and need to be understood for breeders to develop new varieties specifically for the biofuel industry," Tarpley said. Sweet sorghum and sugarcane are both well suited for this purpose.

"While sorghum is an annual and can fit well into a crop rotation, sugarcane is a suitable perennial for many areas," Tarpley said. But to maximize the potential of sweet sorghum as a biofuel crop, breeders need to understand the physiology of the plant and not use sugarcane as a model.

"There is a large body of research on sugarcane that was previously thought to apply equally well to sorghum. Instead, we need to fully understand how sorghum moves and stores sugar in order to elevate to the next level in our breeding efforts," Tarpley said.

The study results were published in the June 2007 issue of BMC Plant Biology (http://www.biomedcentral.com).

Jay Cockrell | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>