Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inquiring Research Minds Want To Know More About Cotton Fleahoppers

06.09.2007
Inquiring minds want to know. The supermarket headlines tell us so.

Inquiring Texas research minds want to know more about cotton fleahoppers - a tiny, sometimes obscure pest that can damage plants during their early growth.

"Fleahoppers are a threat to young cotton for about four weeks," said Dr. Megha Parajulee, Texas Agricultural Experiment Station entomologist based at Lubbock. "They feed on new plant growth, primarily the first small squares. This damage can delay plant maturity, leaving the crop open to damage from other pests later in the growing season."

But these tiny pests aren't all bad. After cotton reaches peak bloom, this tiny critter is considered a beneficial insect – living out its relatively short life as both a predator and prey species.

"Fleahoppers prey on bollworm eggs after peak bloom," Parajulee said. "They also serve as a food source for other predatory beneficial insects as the growing season progresses. But we really don't know much about this pest. We know it is only a cotton pest in Texas and Arkansas, but there is more we don't know."

For instance:

– Can cotton plants compensate for fruit/square loss caused by fleahoppers and still produce acceptable yields?

– What threshold of fleahopper numbers or feeding damage should trigger a chemical control?

– What pesticides work best against fleahoppers without damaging beneficial insects?

A three-year study begun in 2006 by Parajulee and other scientists at the Texas A&M University System Agricultural Research and Extension Center at Lubbock may provide answers to these questions.

"We raise fleahoppers here in our 'nursery' and place them on drip- and furrow-irrigated cotton plants/plots." Parajulee said. "We vary the number of fleahoppers, and we watch them closely through peak bloom to determine where they live and feed on the plants. This will help us develop effective scouting methods for this pest."

Plants in these fleahopper-infected plots are compared to those not seeded with fleahoppers (naturally-occurring insect populations) and to plants chemically treated for fleahopper damage.

"2006 was not a good year for our study. It was very hot and dry," Parajulee said. "Even so, we learned that cotton plants can compensate for fleahopper damage. These plants incurred up to 25 percent fruit loss from as many as three fleahoppers per plant and still produced almost 800 pounds of lint per acre.

"Their yield compared favorably to plants treated for fleahoppers, and untreated plants left to naturally-occurring insect populations." Parajulee hopes 2007 data from this study will help generate a fruit (square) loss treatement threshold. By 2008, the scientists hope to add specific chemical control tips to their arsenal of fleahopper knowledge.

Parajulee is also contributing to another study designed to survey fleahopper biology, behavior and movement statewide, and generate management recommendations for cotton producers.

That study began in 2007 and is led by Dr. Chris Sansone, Texas Cooperative Extension entomologist at San Angelo. Other contributors are Dr. Raul Medina, Experiment Station research entomologist at College Station; Dr. Charles Suh, U.S. Department of Agriculture Agricultural Research Service entomologist at College Station; John Westbrook, USDA Agricultural Research Service meteorologist at College Station; several Extension integrated pest management agents, and Apurba Barman, an entomology doctoral student at Texas A&M University.

"For many years, we entomologists have worked under the assumption that fleahoppers build up in wild host plants and then move into cotton prior to squaring," Parajulee said. "In the eastern part of Texas, fleahopper migration into cotton from wild host plants is pretty constant. Producers there can spray two to four times a season to control them.

"In the Rolling Plains, lack of rainfall limits wild host plants and makes fleahoppers an occasional cotton pest. Producers there rarely need more than one control treatment. On the High Plains, where we have an ocean of cotton and islands of wild host plants, it takes longer for fleahopper populations to build up to damaging levels. But once that level is reached, they can severely impact a lot of cotton by delaying fruiting."

The statewide survey will identify wild host plants that harbor fleahoppers, how and when this pest moves from host plants to cotton, and determine if fleahopper populations from wild host plants and cotton are biologically the same, he said.

"With this knowledge we can recommend cultural practices (plant/weed control), scouting methods, economic thresholds for treatment, and pesticides and application rates to help keep fleahoppers in check," Parajulee said.

Both studies are funded by Cotton Incorporated's Texas State Support Committee.

Tim W. McAlavy | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>