Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inquiring Research Minds Want To Know More About Cotton Fleahoppers

06.09.2007
Inquiring minds want to know. The supermarket headlines tell us so.

Inquiring Texas research minds want to know more about cotton fleahoppers - a tiny, sometimes obscure pest that can damage plants during their early growth.

"Fleahoppers are a threat to young cotton for about four weeks," said Dr. Megha Parajulee, Texas Agricultural Experiment Station entomologist based at Lubbock. "They feed on new plant growth, primarily the first small squares. This damage can delay plant maturity, leaving the crop open to damage from other pests later in the growing season."

But these tiny pests aren't all bad. After cotton reaches peak bloom, this tiny critter is considered a beneficial insect – living out its relatively short life as both a predator and prey species.

"Fleahoppers prey on bollworm eggs after peak bloom," Parajulee said. "They also serve as a food source for other predatory beneficial insects as the growing season progresses. But we really don't know much about this pest. We know it is only a cotton pest in Texas and Arkansas, but there is more we don't know."

For instance:

– Can cotton plants compensate for fruit/square loss caused by fleahoppers and still produce acceptable yields?

– What threshold of fleahopper numbers or feeding damage should trigger a chemical control?

– What pesticides work best against fleahoppers without damaging beneficial insects?

A three-year study begun in 2006 by Parajulee and other scientists at the Texas A&M University System Agricultural Research and Extension Center at Lubbock may provide answers to these questions.

"We raise fleahoppers here in our 'nursery' and place them on drip- and furrow-irrigated cotton plants/plots." Parajulee said. "We vary the number of fleahoppers, and we watch them closely through peak bloom to determine where they live and feed on the plants. This will help us develop effective scouting methods for this pest."

Plants in these fleahopper-infected plots are compared to those not seeded with fleahoppers (naturally-occurring insect populations) and to plants chemically treated for fleahopper damage.

"2006 was not a good year for our study. It was very hot and dry," Parajulee said. "Even so, we learned that cotton plants can compensate for fleahopper damage. These plants incurred up to 25 percent fruit loss from as many as three fleahoppers per plant and still produced almost 800 pounds of lint per acre.

"Their yield compared favorably to plants treated for fleahoppers, and untreated plants left to naturally-occurring insect populations." Parajulee hopes 2007 data from this study will help generate a fruit (square) loss treatement threshold. By 2008, the scientists hope to add specific chemical control tips to their arsenal of fleahopper knowledge.

Parajulee is also contributing to another study designed to survey fleahopper biology, behavior and movement statewide, and generate management recommendations for cotton producers.

That study began in 2007 and is led by Dr. Chris Sansone, Texas Cooperative Extension entomologist at San Angelo. Other contributors are Dr. Raul Medina, Experiment Station research entomologist at College Station; Dr. Charles Suh, U.S. Department of Agriculture Agricultural Research Service entomologist at College Station; John Westbrook, USDA Agricultural Research Service meteorologist at College Station; several Extension integrated pest management agents, and Apurba Barman, an entomology doctoral student at Texas A&M University.

"For many years, we entomologists have worked under the assumption that fleahoppers build up in wild host plants and then move into cotton prior to squaring," Parajulee said. "In the eastern part of Texas, fleahopper migration into cotton from wild host plants is pretty constant. Producers there can spray two to four times a season to control them.

"In the Rolling Plains, lack of rainfall limits wild host plants and makes fleahoppers an occasional cotton pest. Producers there rarely need more than one control treatment. On the High Plains, where we have an ocean of cotton and islands of wild host plants, it takes longer for fleahopper populations to build up to damaging levels. But once that level is reached, they can severely impact a lot of cotton by delaying fruiting."

The statewide survey will identify wild host plants that harbor fleahoppers, how and when this pest moves from host plants to cotton, and determine if fleahopper populations from wild host plants and cotton are biologically the same, he said.

"With this knowledge we can recommend cultural practices (plant/weed control), scouting methods, economic thresholds for treatment, and pesticides and application rates to help keep fleahoppers in check," Parajulee said.

Both studies are funded by Cotton Incorporated's Texas State Support Committee.

Tim W. McAlavy | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>