Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inquiring Research Minds Want To Know More About Cotton Fleahoppers

06.09.2007
Inquiring minds want to know. The supermarket headlines tell us so.

Inquiring Texas research minds want to know more about cotton fleahoppers - a tiny, sometimes obscure pest that can damage plants during their early growth.

"Fleahoppers are a threat to young cotton for about four weeks," said Dr. Megha Parajulee, Texas Agricultural Experiment Station entomologist based at Lubbock. "They feed on new plant growth, primarily the first small squares. This damage can delay plant maturity, leaving the crop open to damage from other pests later in the growing season."

But these tiny pests aren't all bad. After cotton reaches peak bloom, this tiny critter is considered a beneficial insect – living out its relatively short life as both a predator and prey species.

"Fleahoppers prey on bollworm eggs after peak bloom," Parajulee said. "They also serve as a food source for other predatory beneficial insects as the growing season progresses. But we really don't know much about this pest. We know it is only a cotton pest in Texas and Arkansas, but there is more we don't know."

For instance:

– Can cotton plants compensate for fruit/square loss caused by fleahoppers and still produce acceptable yields?

– What threshold of fleahopper numbers or feeding damage should trigger a chemical control?

– What pesticides work best against fleahoppers without damaging beneficial insects?

A three-year study begun in 2006 by Parajulee and other scientists at the Texas A&M University System Agricultural Research and Extension Center at Lubbock may provide answers to these questions.

"We raise fleahoppers here in our 'nursery' and place them on drip- and furrow-irrigated cotton plants/plots." Parajulee said. "We vary the number of fleahoppers, and we watch them closely through peak bloom to determine where they live and feed on the plants. This will help us develop effective scouting methods for this pest."

Plants in these fleahopper-infected plots are compared to those not seeded with fleahoppers (naturally-occurring insect populations) and to plants chemically treated for fleahopper damage.

"2006 was not a good year for our study. It was very hot and dry," Parajulee said. "Even so, we learned that cotton plants can compensate for fleahopper damage. These plants incurred up to 25 percent fruit loss from as many as three fleahoppers per plant and still produced almost 800 pounds of lint per acre.

"Their yield compared favorably to plants treated for fleahoppers, and untreated plants left to naturally-occurring insect populations." Parajulee hopes 2007 data from this study will help generate a fruit (square) loss treatement threshold. By 2008, the scientists hope to add specific chemical control tips to their arsenal of fleahopper knowledge.

Parajulee is also contributing to another study designed to survey fleahopper biology, behavior and movement statewide, and generate management recommendations for cotton producers.

That study began in 2007 and is led by Dr. Chris Sansone, Texas Cooperative Extension entomologist at San Angelo. Other contributors are Dr. Raul Medina, Experiment Station research entomologist at College Station; Dr. Charles Suh, U.S. Department of Agriculture Agricultural Research Service entomologist at College Station; John Westbrook, USDA Agricultural Research Service meteorologist at College Station; several Extension integrated pest management agents, and Apurba Barman, an entomology doctoral student at Texas A&M University.

"For many years, we entomologists have worked under the assumption that fleahoppers build up in wild host plants and then move into cotton prior to squaring," Parajulee said. "In the eastern part of Texas, fleahopper migration into cotton from wild host plants is pretty constant. Producers there can spray two to four times a season to control them.

"In the Rolling Plains, lack of rainfall limits wild host plants and makes fleahoppers an occasional cotton pest. Producers there rarely need more than one control treatment. On the High Plains, where we have an ocean of cotton and islands of wild host plants, it takes longer for fleahopper populations to build up to damaging levels. But once that level is reached, they can severely impact a lot of cotton by delaying fruiting."

The statewide survey will identify wild host plants that harbor fleahoppers, how and when this pest moves from host plants to cotton, and determine if fleahopper populations from wild host plants and cotton are biologically the same, he said.

"With this knowledge we can recommend cultural practices (plant/weed control), scouting methods, economic thresholds for treatment, and pesticides and application rates to help keep fleahoppers in check," Parajulee said.

Both studies are funded by Cotton Incorporated's Texas State Support Committee.

Tim W. McAlavy | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>