Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The 5 Ws of corn production

The 'who' is farmers, and they're asking where to plant, what hybrid, when to apply nitrogen and why

As of late, many uncertainties have been sprouting up in corn production. Researchers and producers have been wondering if precision agricultural technologies can improve crop yield and quality or reduce their variability.

Farmers have been asking a number of questions from, which hybrid should I plant for best yield and quality, to does applying nitrogen fertilizer at a uniform rate produce a better crop outcome, and if not, what nitrogen fertilization strategy does produce a better crop in yield and quality"

Scientists at China Agricultural University, the Precision Agriculture Center of University of Minnesota and Mosaic Crop Nutrition have been attempting to answer those questions by investigating the potential impact of precision nitrogen management on corn yield, protein content and test weight in a study funded by Cargill Crop Nutrition (now Mosaic Company), Cargill Dry Corn Ingredients and Pioneer Hi-Bred International, Inc. The results from this study are published in the September-October 2007 issue of the Soil Science Society of America Journal. View the abstract at:

Precision agriculture is defined as the usage of available technology to develop custom management of soil and crops to fit specific conditions of a small area that is within a larger unit, such as a field. This practice has revolutionized modern farming by allowing farmers to choose the best management strategy at a specific time and place in their fields. It has the potential to increase agricultural resource use efficiency, reduce environmental contamination, and maintain or increase crop yield. Corn farmers use this application by varying the rate of fertilizer depending on differences in potential crop yield, soil type and landscape features across the field. As grain markets shift to a greater emphasis on ethanol, more attention is being directed to optimizing grain quality, where traditionally the emphasis was on quantity. The significant variability of abundance in a given area and abundance over a period of time in crop yield and grain quality has not influenced use efficiency or profit of products made from the crops, but made it difficult for farmers to get premium prices for their products.

The study was conducted on two commercial corn fields in eastern Illinois in 2001 and 2003 involving two corn hybrids and five different N fertilizer application rates across the landscape. Nitrogen response of corn yield and quality were fitted at different within-field locations, and the potential impacts of different N management strategies were evaluated against a uniform rate of N application that is a common farmer’s practice in the region.

The results indicated that one hybrid was found to have higher yield, quality and distribution to suppliers than the other hybrid under either a uniform or varied nitrogen application. Results also showed that varying nitrogen applied to localized within-field conditions and hybrid differences could either increase corn yield with similar or higher nitrogen rates or maintain yield with less nitrogen application, without any significant improvement of grain quality.

Sara Uttech | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>