Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 5 Ws of corn production

04.09.2007
The 'who' is farmers, and they're asking where to plant, what hybrid, when to apply nitrogen and why

As of late, many uncertainties have been sprouting up in corn production. Researchers and producers have been wondering if precision agricultural technologies can improve crop yield and quality or reduce their variability.

Farmers have been asking a number of questions from, which hybrid should I plant for best yield and quality, to does applying nitrogen fertilizer at a uniform rate produce a better crop outcome, and if not, what nitrogen fertilization strategy does produce a better crop in yield and quality"

Scientists at China Agricultural University, the Precision Agriculture Center of University of Minnesota and Mosaic Crop Nutrition have been attempting to answer those questions by investigating the potential impact of precision nitrogen management on corn yield, protein content and test weight in a study funded by Cargill Crop Nutrition (now Mosaic Company), Cargill Dry Corn Ingredients and Pioneer Hi-Bred International, Inc. The results from this study are published in the September-October 2007 issue of the Soil Science Society of America Journal. View the abstract at: http://soil.scijournals.org/cgi/content/abstract/71/5/1490

Precision agriculture is defined as the usage of available technology to develop custom management of soil and crops to fit specific conditions of a small area that is within a larger unit, such as a field. This practice has revolutionized modern farming by allowing farmers to choose the best management strategy at a specific time and place in their fields. It has the potential to increase agricultural resource use efficiency, reduce environmental contamination, and maintain or increase crop yield. Corn farmers use this application by varying the rate of fertilizer depending on differences in potential crop yield, soil type and landscape features across the field. As grain markets shift to a greater emphasis on ethanol, more attention is being directed to optimizing grain quality, where traditionally the emphasis was on quantity. The significant variability of abundance in a given area and abundance over a period of time in crop yield and grain quality has not influenced use efficiency or profit of products made from the crops, but made it difficult for farmers to get premium prices for their products.

The study was conducted on two commercial corn fields in eastern Illinois in 2001 and 2003 involving two corn hybrids and five different N fertilizer application rates across the landscape. Nitrogen response of corn yield and quality were fitted at different within-field locations, and the potential impacts of different N management strategies were evaluated against a uniform rate of N application that is a common farmer’s practice in the region.

The results indicated that one hybrid was found to have higher yield, quality and distribution to suppliers than the other hybrid under either a uniform or varied nitrogen application. Results also showed that varying nitrogen applied to localized within-field conditions and hybrid differences could either increase corn yield with similar or higher nitrogen rates or maintain yield with less nitrogen application, without any significant improvement of grain quality.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org
http://soil.scijournals.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>