Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abertay researchers in clover to unearth destructive bug

08.04.2002


Scots scientists are playing a key role in a major new research effort which could save Britain’s farmers millions of pounds a year through reductions in fertiliser and pesticide use.



Biotechnology experts at the University of Abertay Dundee, in partnership with two organisations in England, have been awarded £471,000 by the BBSRC (Biotechnology and Biological Sciences Research Council) for a three-year study into the relationship between white clover and a tiny insect.

White clover is highly valued throughout the country both for its feeding value for livestock and for its ability to ‘fix’ nitrogen in the soil - a vital nutrient for other plants.


Some 75% of grassland seed mixtures sown in the UK include white clover, yet studies have shown that it only thrives in around 20% of fields managed as pasture for cattle and sheep. Experts believe that the main culprit is a tiny weevil, less than one millimetre long, which eats the roots of the plant including the all-important nitrogen-fixing nodules.

High levels of expensive fertiliser are needed to ensure that white clover grows properly and contributes to the productivity of the pasture and the livestock which feeds upon it.

Now, Abertay biotechnologists are working with colleagues at Reading University and the Institute of Grassland and Environmental Research (IGER), to find out exactly what is going on just beneath the surface of our fields.

Researchers at Reading will be using advanced CAT scanners (computerised axial tomography) to see inside the soil without physically affecting it - the same non-invasive technology used widely in medicine for diagnosing conditions inside the body.

Experts at Abertay will then apply the latest computerised statistical techniques to produce a theoretical model of what happens inside the soil and what factors are influencing change. This can then be used to predict the outcome of changing any one of those factors through management of the field. It is hoped that the study will produce a new management model which could reduce the amount of fertiliser applied to UK grassland and comply with new, more stringent, environmental legislation in the future.

Professor John Crawford, director of SIMBIOS - the joint centre for mathematical biology established at the Universities of Abertay Dundee and Dundee - explained: “We know that this weevil, from the Sitona genus, preys on the root systems of the plant, but we don’t know how it moves around in the soil to find the roots. When you are less than a millimetre long, finding a food source several centimetres away could be difficult, but Sitona seems to manage.

“We need to find out how the weevils and their larvae do this, and what environmental factors influence their success. Then we can draw up guidelines of management practice which will help farmers reduce the impact of the weevil without using expensive and environmentally-unfriendly chemicals.”

Kevin Coe | alphagalileo

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>