Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abertay researchers in clover to unearth destructive bug

08.04.2002


Scots scientists are playing a key role in a major new research effort which could save Britain’s farmers millions of pounds a year through reductions in fertiliser and pesticide use.



Biotechnology experts at the University of Abertay Dundee, in partnership with two organisations in England, have been awarded £471,000 by the BBSRC (Biotechnology and Biological Sciences Research Council) for a three-year study into the relationship between white clover and a tiny insect.

White clover is highly valued throughout the country both for its feeding value for livestock and for its ability to ‘fix’ nitrogen in the soil - a vital nutrient for other plants.


Some 75% of grassland seed mixtures sown in the UK include white clover, yet studies have shown that it only thrives in around 20% of fields managed as pasture for cattle and sheep. Experts believe that the main culprit is a tiny weevil, less than one millimetre long, which eats the roots of the plant including the all-important nitrogen-fixing nodules.

High levels of expensive fertiliser are needed to ensure that white clover grows properly and contributes to the productivity of the pasture and the livestock which feeds upon it.

Now, Abertay biotechnologists are working with colleagues at Reading University and the Institute of Grassland and Environmental Research (IGER), to find out exactly what is going on just beneath the surface of our fields.

Researchers at Reading will be using advanced CAT scanners (computerised axial tomography) to see inside the soil without physically affecting it - the same non-invasive technology used widely in medicine for diagnosing conditions inside the body.

Experts at Abertay will then apply the latest computerised statistical techniques to produce a theoretical model of what happens inside the soil and what factors are influencing change. This can then be used to predict the outcome of changing any one of those factors through management of the field. It is hoped that the study will produce a new management model which could reduce the amount of fertiliser applied to UK grassland and comply with new, more stringent, environmental legislation in the future.

Professor John Crawford, director of SIMBIOS - the joint centre for mathematical biology established at the Universities of Abertay Dundee and Dundee - explained: “We know that this weevil, from the Sitona genus, preys on the root systems of the plant, but we don’t know how it moves around in the soil to find the roots. When you are less than a millimetre long, finding a food source several centimetres away could be difficult, but Sitona seems to manage.

“We need to find out how the weevils and their larvae do this, and what environmental factors influence their success. Then we can draw up guidelines of management practice which will help farmers reduce the impact of the weevil without using expensive and environmentally-unfriendly chemicals.”

Kevin Coe | alphagalileo

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>