Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First All-African GM Crop Is Resistant To Maize Streak Virus

The first all-African genetically modified crop plant with resistance to the severe maize streak virus (MSV), which seriously reduces the continent’s maize yield, has been developed by scientists from the University of Cape Town and PANNAR PTY Ltd, a South African seed company.

The research, published in Plant Biotechnology Journal represents a significant advance in African agricultural biotechnology, and will play an important role in alleviating Africa’s food shortages and famine.

Dr Dionne Shepherd, lead researcher explains, “MSV is transmitted to maize by small insects called leafhoppers. The disease is therefore a result of a complex interplay between the plant, the virus and insect. Factors that can influence the severity of the disease include the age at which the plant is infected (the younger the plant, the more severe the infection), the maize variety (some are more susceptible than others), and environmental conditions.

“We have created an MSV-resistant maize variety by genetic engineering, using an approach known as pathogen-derived resistance. This means that a gene from the viral pathogen is used to protect the plant from that pathogen. We mutated a viral gene that under normal circumstances produces a protein that is essential for the virus to replicate itself and inserted it into the maize plant’s genome, creating genetically modified maize. When the virus infects one of these transgenic maize plants, it displays a significant delay in symptom development, a decrease in symptom severity and higher survival rates than non-transgenic plants.”

The next stage of the research involves field trials to ensure that the transformed crop is digestible, that the protein is not an allergen and that it will be ecologically friendly to other organisms within the environment. Following the results of these trials, the crop will be monitored over a number of growing seasons before it is made accessible to local farmers.

Lucy Mansfield | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>