Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modelling plants provides virtual approach to crop optimisation

10.08.2007
Combining computer science, biochemistry and horticulture in the EUREKA E! 2544 E PLANTS project has resulted in a much faster and more exact model to speed the investigation and monitoring of plant behaviour and growing conditions.

Farmers can make better use of resources, resulting in cheaper and better quality food for all and learn more effective crop management as they can visualise precisely and clearly what is happening in their fields.

Currently, it is necessary for commercial nurseries and farmers to grow crops in real time so they can experiment and optimise plant care in terms of irrigation, spraying, temperature and nutrients. “We wanted to model how plants grow to let farmers see what is happening in a more user-friendly and advantageous way,” explains Janneke Hadders of Dutch partner Dacom Plant-Service. “Our approach made it possible for the first time to integrate the behaviour and three-dimensional form on a plant component level,” adds Dr Lubo Jankovic of project leader InteSys.

The project started when the two UK partners – InteSys and Chembiotech Laboratories – approached Plant Research International (PRI) of Wageningen University in the Netherlands, which has extensive experience in plant modelling. PRI suggested involving Dacom as the specialist in presenting such information to the end user. “EUREKA labelling played a key role in enabling us to find the financial support required,” adds Hadders. “Without EUREKA, the project would not have been possible.”

“Plants use simple principles of component behaviour and they interact by competing for internal and external resources,” says Dr Jankovic. The project involved developing an analogue computer model calibrated using data from the growth of real plants. Work was carried out on chrysanthemums. “This flower is an easy plant to grow in greenhouses, where farmers can control the conditions,” says Hadders. Two parameters were selected for study: temperature and radiation. “We ended up with a three-dimensional model of the virtual plant growing where we can enter parameters and see the effect.” The resulting model allows simulation on a PC so that the farmer can observe the effect, for example of a certain temperature over a number of days.

This is very much an intermediate step. The next stage would be to apply the same approach to ‘open-air’ crops – particularly potatoes and sugar beet. “We are already working on this with PRI and expect to have results within one or two years,” says Hadders.

Sally Horspool | alfa
Further information:
http://www.eureka.be/eplants

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Hot vibrating gases under the electron spotlight

12.12.2017 | Life Sciences

New silicon structure opens the gate to quantum computers

12.12.2017 | Information Technology

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>