Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternative farming cleans up water

24.07.2007
Minnesota researchers show cropping system biodiversity decreases agricultural pollution

Although the addition of nutrients to soil helps to maximize crop production, fertilizer can leach nutrients, polluting the water supply. A recent study by researchers at the University of Minnesota shows alternative cropping practices may help to protect the environment by reducing high nitrate levels in surface and ground water caused by conventional fertilizer use. The team of scientists reports their findings in the July-August 2007 issue of the Journal of Environmental Quality.

Nitrogen is one of the most important elements required in agricultural systems for plant and animal production. While treatment with the correct amount of nitrogen-based fertilizer optimizes crop yield and minimizes environmental damage, too much nitrogen can lead to nitrate loss.

Nitrate, a mobile form of nitrogen, escapes via water that percolates through soils. In regions where subsurface drainage is used to promote crop growth, high levels of nitrates are transported to downstream waters. Nitrate contamination of water can contribute to waters becoming hypoxic and stress aquatic life living downstream.

“The challenge facing industry, farmers, agricultural advisors, and others concerned about the environment is to develop efficient cropping systems that maintain economical production levels while minimizing surface and ground water degradation,” said Jeff Strock, lead author of the study.

In search of ways to reduce agricultural pollution, Strock and others measured tile drainage and nitrate losses under conventional and alternative cropping systems over a three-year period in southwest Minnesota. This study was funded by the USDA-CSREES-National Integrated Water Quality Program.

Researchers categorized conventional farming practices as corn-soybean rotations with inorganic fertilizer application and pesticide usage. Alternative farming practices included organic management practices that incorporated rotation of a variety of crops including corn, soybean, oat, alfalfa, buckwheat, and rye with nutrients supplied from legumes and either fresh or composted manure sources. The study found that alternative cropping systems reduced the amount of water lost in tile drainage by 41 percent compared to a conventional corn-soybean rotation. Alternative farming practices also reduced nitrate-nitrogen losses by between 59 and 62 percent in two out of three years.

“Our data suggests that water quantity and quality could be improved by increasing cropping system biodiversity,” said Strock.

Whether in conventional or organic cropping systems, Strock suggests cropping system biodiversity may be adopted as one of several practices to build a sustainable farm management system that is productive, profitable, and environmentally acceptable.

“There are no silver bullets for solving our water quality problems,” said Strock. “Instead, implementing practices such as cropping system biodiversity, along with refined nitrogen management practices, growing perennial crops in a rotation, cover cropping, and other management practices will help prevent nitrate contamination of our lakes and rivers.”

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org
http://jeq.scijournals.org/cgi/content/abstract/36/4/1194

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>