Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increase in creeping vines signals major shift in southern US forests

18.07.2007
A new study of bottomland hardwood forests in the southeastern United States suggests that the increased growth of vines may change the landscape of these forests.

Researchers charting the growth of vines in two forests in South Carolina found up to a 10-fold increase in the number of vines in just two decades. Vines commonly found in both forests include grapevines, trumpet vine, poison ivy and Virginia creeper. Most of the vines use adhesive roots or tendrils to climb trees.

The patterns observed in the south add to a growing number of studies that found similar patterns in temperate and tropical forests, said Bruce Allen, the study's lead author and a recent doctoral graduate of Ohio State University's School of Environment and Natural Resources.

“Collectively, we're talking about an increase of more than 500 vine stems in 27 acres of forest area that we studied,” he said. “And all of the growth is within the last 10 to 20 years. Old photographs from the sites indicate there may have been fewer vines historically.

“There are now so many vines that they're starting to change the makeup of the forest,” he continued. “It appears that as the number of vines increase, the density of small trees decreases at a fairly uniform rate.”

Although the specific reasons for this shift aren't fully understood, Allen and his colleagues say possible mechanisms include increases in carbon dioxide concentrations, which have been shown to increase vine growth more than tree growth.

“Many vines thrive on elevated levels of carbon dioxide,” he said. “Several studies suggest that vines like poison ivy benefit more than other plants from higher CO2 levels.”

The findings appear in a recent issue of the journal Forest Ecology and Management. Allen conducted the study with P. Charles Goebel, an associate professor of environment and natural resources at Ohio State, and with Rebecca Sharitz, a senior research ecologist at the University of Georgia 's Savannah River Ecology Laboratory in Aiken, S.C.

The researchers collected 12 years' worth of data from six plots that each covered 2.5 acres – that's about the size of a football field – in an old-growth forest in South Carolina's Congaree National Park. They surveyed the plots every four years, beginning in late 1989. That was the same year that Hurricane Hugo struck the southeastern United States, killing an estimated 20 percent of the forest's trees.

The researchers also surveyed five 2.5-acre plots in a second-growth forest – a forest that was partially logged about 100 years ago and has grown back – along the Savannah River and a major tributary, Upper Three Runs Creek. The Savannah River creates a natural border between South Carolina and Georgia.

The researchers gathered data on vine growth in this protected forest every six to 10 years, beginning in 1979.

Allen said that he wanted to see if there was any difference in vine density between the old growth and newer forest.

During each survey session researchers would count the number of vine stems in each plot, identify new and dead stems, and look at vine growth from previous surveys.

Vine density in the old-growth, Congaree forest nearly doubled within 12 years. Right after Hurricane Hugo, there were about 100 vines in each plot. By 2002, that average had increased to slightly more than 200 vines per plot. While the second-growth, Savannah River forest had fewer vines by the end of the study, the researchers calculated a 10-fold increase in the number of vines in this forest -- they counted an average of 10 vines per plot by the end of the study in the Savannah River forest. In 1979, researchers had found just one vine in all of the research plots.

The five-fold difference in vine density between the two forests suggests that second-growth forests may be at more risk to threatening vine growth. Researchers wonder whether the steadily increasing growth in these forests will continue in the coming years. Unpublished data on vine growth in these forests gathered during the last four years suggests that this growth will continue. If it does, that could have an economic effect on the people who manage floodplain forests for timber.

“Although there was a substantial difference in the number of vines in each forest, the increase in density at the Savannah River site represents a linear increase in the number of vines,” Allen said. “We would expect vine density to increase after a disturbance, such as a hurricane.

“But to see such a clear, definitive increase at the undisturbed site along the Savannah River was unexpected, based on current models of floodplain forest development.”

A few years ago, Allen and his colleagues published a study suggesting that increased vine growth equates to a decrease in tree growth.

As the number of vines increase, their leaves fill a forest's canopy and essentially reduce the amount of sunlight that reaches the forest floor. Some of the competing plants die because they can't get enough light.

“The likely result is that more vines will grow on existing trees, and compete directly with tree seedlings,” Allen said. “A steady increase in vine numbers will likely influence the kind of trees that ultimately grow in these forests.”

Still, Allen says it would take many lifetimes to completely change the look of the forests.

“Both study sites lie in a floodplain and are often in the path of hurricane-force winds, so their landscape can change rapidly,” Allen said. “Data we've gathered from the Congaree forest shows a reduction in vine density after a hurricane. The winds wipe out many of the trees on which vines grow, thereby letting more light into the forest and also triggering a short-term increase in tree growth beneath the canopy.”

This work received support from several agencies, including the National Park Service, the U.S. Department of Energy, the Ohio Agricultural Research and Development Center, Ohio State and the Savannah River Ecology Laboratory.

Bruce Allen | EurekAlert!
Further information:
http://www.osu.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>