Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding mushroom’s secrets could combat carbon, find better biofuels & safer soils

17.07.2007
Researchers at the University of Warwick are co-ordinating a global effort to sequence the genome of one of the World’s most important mushrooms - Agaricus bisporus. The secrets of its genetic make up could assist the creation of biofuels, support the effort to manage global carbon, and help remove heavy metals from contaminated soils.

The Agaricus mushroom family are highly efficient ‘secondary decomposers’ of plant material such as leaves and litter –breaking down the material that is too tough for other fungi and bacteria to handle. How exactly it does this, particularly how it degrades tough plant material known as lignin, is not fully understood. By sequencing the full genome of the mushroom, researchers hope to uncover exactly which genes are key to this process. That information will be extremely useful to scientists and engineers looking to maximize the decomposition and transformation of plant material into bio fuels.

The mushroom also forms an important model for carbon cycling studies. Carbon is sequestered in soils as plant organic matter. Between 1–2 giga tons of carbon a year are sequestered in pools on land in the temperate and boreal regions of the earth, which represents 15–30% of annual global emissions of carbon from fossil fuels and industrial activities. Understanding the carbon cycling role of these fungi in the forests and other ecosystems is a vital component of optimizing carbon management.

That however is not the end of the mushrooms talents; several Agaricus species are able to hyper-accumulate toxic metals in soils at a higher level than many other fungi. Understanding how the mushroom does this improves prospects of using such fungi for the bioremediation of contaminated soils.

Agaricus bisporus is one of the most widely cultivated mushrooms and the genome research will also benefit growers and consumers through identification of improved quality traits such as disease resistance.

The University of Warwick’s horticultural research arm Warwick HRI will co-ordinate provision of genetic materials to the Joint Genome Institute in California for sequencing, will organise analysis of the sequence data and act as curator of the mushroom genome.

Agaricus bisporus has around 35 megabases of genetic information coding for an estimated 11,000 genes. The researchers expect to have a 90% complete genome within 3 years

Peter Dunn | alfa
Further information:
http://ww.warwick.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>