Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding mushroom’s secrets could combat carbon, find better biofuels & safer soils

17.07.2007
Researchers at the University of Warwick are co-ordinating a global effort to sequence the genome of one of the World’s most important mushrooms - Agaricus bisporus. The secrets of its genetic make up could assist the creation of biofuels, support the effort to manage global carbon, and help remove heavy metals from contaminated soils.

The Agaricus mushroom family are highly efficient ‘secondary decomposers’ of plant material such as leaves and litter –breaking down the material that is too tough for other fungi and bacteria to handle. How exactly it does this, particularly how it degrades tough plant material known as lignin, is not fully understood. By sequencing the full genome of the mushroom, researchers hope to uncover exactly which genes are key to this process. That information will be extremely useful to scientists and engineers looking to maximize the decomposition and transformation of plant material into bio fuels.

The mushroom also forms an important model for carbon cycling studies. Carbon is sequestered in soils as plant organic matter. Between 1–2 giga tons of carbon a year are sequestered in pools on land in the temperate and boreal regions of the earth, which represents 15–30% of annual global emissions of carbon from fossil fuels and industrial activities. Understanding the carbon cycling role of these fungi in the forests and other ecosystems is a vital component of optimizing carbon management.

That however is not the end of the mushrooms talents; several Agaricus species are able to hyper-accumulate toxic metals in soils at a higher level than many other fungi. Understanding how the mushroom does this improves prospects of using such fungi for the bioremediation of contaminated soils.

Agaricus bisporus is one of the most widely cultivated mushrooms and the genome research will also benefit growers and consumers through identification of improved quality traits such as disease resistance.

The University of Warwick’s horticultural research arm Warwick HRI will co-ordinate provision of genetic materials to the Joint Genome Institute in California for sequencing, will organise analysis of the sequence data and act as curator of the mushroom genome.

Agaricus bisporus has around 35 megabases of genetic information coding for an estimated 11,000 genes. The researchers expect to have a 90% complete genome within 3 years

Peter Dunn | alfa
Further information:
http://ww.warwick.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>