Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme weather monitoring boosted by space sensor

17.07.2007
The first soil moisture maps with a spatial resolution of one km are available online for the entire southern African subcontinent. As soil moisture plays an important role in the global water cycle, these maps, based on data from ESA’s Envisat satellite, will lead to better weather and extreme-event forecasting, such as floods and droughts.

"Predicting when and where floods are likely to happen is becoming more and more important," Geoff Pegram of the University of KwaZulu-Natal, South Africa, said. "Although we cannot prevent floods, we can anticipate them and hopefully get people out of the way. This brings hydrology into the 21st century and makes life better for people."

Soil moisture is the water stored in the soil within reach of plants. When there is too little soil moisture, rain-fed crops and natural vegetation wilt. When there is too much soil moisture, the risk of flooding, flash floods and erosion increase.

Despite its importance for agricultural planning and weather forecasting, there has been a lack of soil moisture information in Africa because of the high costs of in-situ measurement networks. In addition, unlike satellite observations, point-based measurements are often not sufficient to provide an overall picture over large areas that may be effectively used in models.

The ESA-backed SHARE (Soil Moisture for Hydrometeorological Applications in the Southern African Development Community Region) project, funded through the ESA’s Data User Element, is the first to demonstrate that spaceborne Synthetic Aperture Radar (SAR) instruments can deliver soil moisture data of high spatial (one km) and temporal (less than one week) resolution.

The SHARE project team combines expertise in soil moisture remote sensing from Vienna University of Technology with specialists in hydro-meteorological applications from University of KwaZulu-Natal in Durban, South Africa.

"I think it is really a breakthrough. Envisat is the first satellite to provide us with the good temporal coverage that we needed for the algorithm and the methods to be successful," Wolfgang Wagner of the Vienna University of Technology said. "Chinese scientists have already used our data to initialise weather forecasts and demonstrated they could better predict the location and intensity of a precipitation event, which resulted in a flood. Soil moisture is such an important variable that it influences vegetation, soil, run-off and weather, affecting the lives of us all."

SHARE was one of the projects initiated under ESA’s TIGER initiative, launched in 2002 to assist African countries to overcome water-related problems and to bridge Africa's water information gap using satellite data. To date, more than 200 African water basin authorities, universities and other organisations have become involved in TIGER projects across the continent.

The TIGER initiative is implemented in three stages - research, pre-operational and operational. The research stage encourages water authorities in Africa to undertake research initiatives and supports them with Earth observation (EO) data, training and tools. The pre-operational stage aims to demonstrate tailored EO-based services and systems for collecting water-related information. The operational stage is aimed at transferring the leadership of the projects to African water authorities.

SHARE concluded its pre-operational stage last month and will now seek funding and support from African organisations.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEM73DHYX3F_economy_0.html

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>