Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Colorado invention may allow thirsty crops to signal farmers

18.06.2007
High-tech leaf sensors measuring leaf thickness, water deficiency communicate wirelessly with computers, crop tenders

Corn and potato crops may soon provide information to farmers about when they need water and how much should be delivered, thanks to a University of Colorado at Boulder invention optioned to AgriHouse Inc., a Berthoud, Colo., high-tech company.

The technology includes a tiny sensor that can be clipped to plant leaves charting their thickness, a key measure of water deficiency and accompanying stress, said Research Associate Hans-Dieter Seelig of CU-Boulder's BioServe Space Technology Center. Data from the leaves could be sent wirelessly over the Internet to computers linked to irrigation equipment, ensuring timely watering, cutting down on excessive water and energy use and potentially saving farmers in Colorado millions of dollars per year, he said.

"We think this is an exciting technology, and the implications for the agriculture industry are enormous," said Seelig. Based in large part on Seelig's 2005 CU-Boulder doctoral thesis in aerospace engineering sciences, the technology was optioned to AgriHouse in March by the University of Colorado Technology Transfer Office, giving AgriHouse the exclusive right to negotiate a license with CU within 12 months.

Richard Stoner, AgriHouse founder and president, said existing technology like soil moisture sensors used to assess a crop's water needs do not always provide an accurate picture of existing plant and field conditions. "What we are developing is a non-intrusive device that gently rests on the plants and lets them interface with the digital world," he said. "Basically, this is a device that will allow plants to talk to humans and communicate their needs, like when to water and apply fertilizer."

Stoner is the principal investigator on a $150,000 Small Business Technology Transfer research grant awarded in May by the National Science Foundation to AgriHouse to develop the new technology. Seelig is an institutional investigator on the effort. In 2006, Seelig was awarded a $10,000 proof-of-concept grant for his research from CU's Technology Transfer Office.

Less than one-tenth the size of a postage stamp, the sensor consists of an integrated-circuit chip that clips to individual plant leaves and collects and stores information, said Seelig. When the leaves lose enough water to contract to a critical width, the sensor can wirelessly signal computers.

The computers, for example, could instruct individual pivot irrigation systems used widely on Colorado's eastern plains to dispense set amounts of water to particular crops, automatically turning the motors that drive them on-and-off and conserving water and energy in the process, he said.

"Farmers today rely on standard practices that include a good eye and a green thumb," said Stoner. "But this new system can tell a farmer precisely when a plant's water uptake potential is at its peak, which could conceivably decrease the number of watering days for certain crops by up to a day or two each week."

Economists estimate that agricultural activity accounts for about 40 percent of the total freshwater use in the United States. About 60 percent of all crops in the United States are irrigated using water from lakes, reservoirs, wells and rivers.

Stoner likened the plant communication aspect of the invention to a scene in the 1986 comedy musical film, "Little Shop of Horrors," when a giant carnivorous plant tells humans to "feed me." "This technology allows plants to say, 'water me,' " he said.

High eastern plains water-use has led to lawsuits against Colorado for violations of interstate water compacts, including a recent $30 million payment to Kansas for overuse of the Arkansas River, said Seelig. A recent U.S. Supreme Court lawsuit against Colorado and Nebraska for overuse of Republican River water threatened to shut down all Colorado wells impacting the river if solutions for reducing irrigation water are not found. Farmers irrigate nearly one-half million acres on the eastern plains from the Ogallala Aquifer that directly impacts the Republican River, he said.

The researchers have been experimenting with cowpea, a legume, but believe the new leaf-sensor technology would be transferable to a variety of crops, including corn, wheat, potatoes, sugar beets and pinto beans. In the future, it might also be applicable to monitoring large swaths of urban grass like city parks, Stoner said.

"This device is very precise, and will allow a plant to receive just the right amount of water," said Seelig. "If a plant can tell a water valve when to open and when to close, farmers are going to save a lot of money."

Hans Seelig | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>