Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Colorado invention may allow thirsty crops to signal farmers

18.06.2007
High-tech leaf sensors measuring leaf thickness, water deficiency communicate wirelessly with computers, crop tenders

Corn and potato crops may soon provide information to farmers about when they need water and how much should be delivered, thanks to a University of Colorado at Boulder invention optioned to AgriHouse Inc., a Berthoud, Colo., high-tech company.

The technology includes a tiny sensor that can be clipped to plant leaves charting their thickness, a key measure of water deficiency and accompanying stress, said Research Associate Hans-Dieter Seelig of CU-Boulder's BioServe Space Technology Center. Data from the leaves could be sent wirelessly over the Internet to computers linked to irrigation equipment, ensuring timely watering, cutting down on excessive water and energy use and potentially saving farmers in Colorado millions of dollars per year, he said.

"We think this is an exciting technology, and the implications for the agriculture industry are enormous," said Seelig. Based in large part on Seelig's 2005 CU-Boulder doctoral thesis in aerospace engineering sciences, the technology was optioned to AgriHouse in March by the University of Colorado Technology Transfer Office, giving AgriHouse the exclusive right to negotiate a license with CU within 12 months.

Richard Stoner, AgriHouse founder and president, said existing technology like soil moisture sensors used to assess a crop's water needs do not always provide an accurate picture of existing plant and field conditions. "What we are developing is a non-intrusive device that gently rests on the plants and lets them interface with the digital world," he said. "Basically, this is a device that will allow plants to talk to humans and communicate their needs, like when to water and apply fertilizer."

Stoner is the principal investigator on a $150,000 Small Business Technology Transfer research grant awarded in May by the National Science Foundation to AgriHouse to develop the new technology. Seelig is an institutional investigator on the effort. In 2006, Seelig was awarded a $10,000 proof-of-concept grant for his research from CU's Technology Transfer Office.

Less than one-tenth the size of a postage stamp, the sensor consists of an integrated-circuit chip that clips to individual plant leaves and collects and stores information, said Seelig. When the leaves lose enough water to contract to a critical width, the sensor can wirelessly signal computers.

The computers, for example, could instruct individual pivot irrigation systems used widely on Colorado's eastern plains to dispense set amounts of water to particular crops, automatically turning the motors that drive them on-and-off and conserving water and energy in the process, he said.

"Farmers today rely on standard practices that include a good eye and a green thumb," said Stoner. "But this new system can tell a farmer precisely when a plant's water uptake potential is at its peak, which could conceivably decrease the number of watering days for certain crops by up to a day or two each week."

Economists estimate that agricultural activity accounts for about 40 percent of the total freshwater use in the United States. About 60 percent of all crops in the United States are irrigated using water from lakes, reservoirs, wells and rivers.

Stoner likened the plant communication aspect of the invention to a scene in the 1986 comedy musical film, "Little Shop of Horrors," when a giant carnivorous plant tells humans to "feed me." "This technology allows plants to say, 'water me,' " he said.

High eastern plains water-use has led to lawsuits against Colorado for violations of interstate water compacts, including a recent $30 million payment to Kansas for overuse of the Arkansas River, said Seelig. A recent U.S. Supreme Court lawsuit against Colorado and Nebraska for overuse of Republican River water threatened to shut down all Colorado wells impacting the river if solutions for reducing irrigation water are not found. Farmers irrigate nearly one-half million acres on the eastern plains from the Ogallala Aquifer that directly impacts the Republican River, he said.

The researchers have been experimenting with cowpea, a legume, but believe the new leaf-sensor technology would be transferable to a variety of crops, including corn, wheat, potatoes, sugar beets and pinto beans. In the future, it might also be applicable to monitoring large swaths of urban grass like city parks, Stoner said.

"This device is very precise, and will allow a plant to receive just the right amount of water," said Seelig. "If a plant can tell a water valve when to open and when to close, farmers are going to save a lot of money."

Hans Seelig | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>