Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small, self-controlled planes combine plant pathology and engineering

14.06.2007
A Virginia Tech plant pathologist has developed autonomous unmanned aerial vehicles (UAVs) to detect airborne pathogens above agricultural fields.

David Schmale, assistant professor of plant pathology, physiology, and weed science in the College of Agriculture and Life Sciences, has not only linked agriculture and engineering with his interdisciplinary research but has also given scientists an unprecedented glimpse into the life of microorganisms hundreds of meters above the surface of the earth.

“Until recently, researchers used autonomous UAVs for military applications, but now we can apply this cutting-edge technology to agriculture,” said Schmale, who is an affiliate faculty member in the Virginia Center for Autonomous Systems (VaCAS), a Virginia Tech research center that facilitates collaboration related to autonomous systems in the College of Engineering, the College of Agriculture and Life Sciences, and the College of Natural Resources.

Scientists have used aircraft to monitor the movement of airborne pathogens for years, but Schmale is the first plant pathologist to use an autonomous system for this process.

“Autonomous UAVs have distinct advantages over a sampling aircraft operated via remote control,” Schmale explained. “First, the autonomous UAVs maintain a very precise sampling path. We can establish a GPS waypoint in the center of an agricultural field, and the autonomous plane can circle around the waypoint at a set altitude, with about a meter variation up and down. Second, the autonomous technology enables us to have coordinated flight with multiple aircraft. In other words, we can have two aircraft sampling pathogens at the same time but at different altitudes.”

Schmale has used the small, self-controlled planes to collect samples of the fungal genus Fusarium tens to hundreds of meters above the surface of the earth. This genus contains some of the world’s most devastating plant and animal pathogens and remains largely a mystery to scientists who do not have a firm understanding of its ability to travel long distances in the atmosphere. By placing antibiotics in the sampling collection plates, researchers can ensure that only Fusarium will grow on the plates. Over the course of 75 different UAV-sampling flights above agricultural fiends at Virginia Tech’s Kentland Farm, Schmale and his colleagues collected more than 500 viable colonies of Fusarium, representing at least a dozen species.

“For 11 of these Fusarium species, this is the first report of their ability to be transported great distances above the surface of the earth,” Schmale said. “Our work has important implications for the rapid spread of invasive plant and animal pathogens in the United States.”

Schmale’s research is not limited to the study of Fusarium, however. He has expanded his interests to explore entire microbial populations in the atmosphere—a type of research he calls “aerogenomics.”

“One of the species we collected with our autonomous UAVs appears to be a bacterium known only to exist in a cavern in Arizona,” he said. “What was that bacterium doing 100 meters above Kentland Farm? In many of our other samples, we have found organisms that have never been cultured before. Some of these microbes may thrive only in the atmosphere, and many of them may be new to science.”

This and other fascinating results have led Schmale to hypothesize that some airborne microorganisms have “novel biochemical processes for interacting with each other as a community of organisms in the atmosphere.” He explained, “We know that microbes mediate important biochemical processes in the soil and the ocean. It is not so farfetched that a similar drama unfolds in the atmosphere, which we already know is teeming with microbial life.”

Although Schmale is not currently conducting his research for the armed forces, his work has a definite biosecurity element.

“Many plant pathogens are transported over long distances in the atmosphere, threatening agriculture in the United States from both inside and outside the borders of the country,” Schmale said. “An increased understanding of the dynamics of plant pathogens in the atmosphere is essential for establishing effective quarantine measures, preventing the spread of plant disease, and mitigating potentially damaging events targeted at our nation’s agriculture and food supply.”

VaCAS member research activities range from fundamental control theory to vehicle development to applications for science, security, and commerce. Schmale and other affiliate faculty members in the College of Agriculture and Life Sciences bring the fields of plant pathology, entomology, and horticulture to VaCAS.

Contact Michael Sutphin at msutphin@vt.edu or (540) 231-6975.

Michael Sutphin | EurekAlert!
Further information:
http://www.vt.edu

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>