Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sowing seed on salty ground

08.06.2007
Scientists have discovered a gene that allows plants to grow better in low nutrient conditions

Scientists have discovered a gene that allows plants to grow better in low nutrient conditions and even enhance their growth through sodium uptake, according to a report published online this week in The EMBO Journal.

Salty soil caused by irrigation practices in arid regions has become a major agricultural problem – not only in India, China and African countries, but also around the Mediterranean and in dry regions of the USA, such as California. This is only expected to get worse in forthcoming years, as climate change leads to desertification.

Julian Schroeder and coworkers investigated a sodium transporter called OsHKT2;1 in the roots of rice plants. Their results provide evidence that this transporter has capabilities previously thought to exist but not genetically validated in plants before. Under salt stress, when sodium levels are too high, OsHKT2;1 transport is quickly shut off, protecting the plant from accumulating too much sodium before it can become toxic.

In addition, the authors found that sodium can also have beneficial effects under nutrient poor conditions. On soils where little nutritional potassium is available, a common problem after many years of agricultural production, plants can take up sodium through the OsHKT2;1 transporter to replace some of the functions of potassium and actually enhance growth. This improvement of our understanding of how plants regulate salt uptake in their roots may help to eventually find a solution to reducing the impact of soil salinity on agricultural productivity.

Julian Schroeder | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>