Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaner manure burns hotter in ethanol processing

25.05.2007
Clean manure may sound like an oxymoron, but Dr. Brent Auvermann is working with feedyard owners to help them get the most "spark" from it as a fuel source.

Auvermann, a Texas Cooperative Extension engineering specialist, hosted "Producing High-Value Manure for BioFuels and Fertilizer" recently in Hereford. The meeting outlined work by Texas Agricultural Experiment Station researchers to determine best management practices for scraping manure from the feed pens. "We're doing something that has never been done before," said Arles "Bugs" Graham, Panda Energy International's general manager for the Hereford plant. Graham spoke at the meeting. "We're using your manure as an energy source," he said. "It's a very complex process."

After starting up the plant with natural gas as the boiler fuel, Panda Energy will eventually use manure as a fuel source when producing ethanol for an E10 fuel blend, Graham said.

The plant will initially process corn for ethanol, although the company is looking at alternative sources of starch to make the ethanol, and it will produce distiller's grains as a by-product.

"But manure is our future," Graham said, estimating each plant will use 1,500 tons a day.

Jim Adams, Panda Energy vice president-fuels, said the plant will begin asking yards in June to sign up for a percentage of their manure. The past winter was a wake-up call, Adams said. Sometimes when the weather is too wet, manure can't be harvested from the pens. Manure will be used by this fall, so "we have to start stockpiling now" to ensure a steady supply.

Adams said the plant will use manure on a six-day basis, requiring 70 to 80 truckloads per day. Panda's contractor will collect from the pens when they are dry enough, but will need to pull from stockpiles when pen surfaces are too wet.

Quality is the biggest issue, Auvermann said. The manure needs to burn at a minimum rate of 2,758 British thermal units per pound of manure. That number changes according to the amount of pollutants - moisture and dirt - included when the pen is scraped.

If all the water and contaminants were removed from the manure, the highest quality would be 8,500 Btu, "but we can't do that, because we can't take the ash out completely," he said.

Manure from soil-surfaced pens may not always meet the minimum heating value on an as-received basis, Auvermann said. Feedyard operators will have to take some steps to improve it.

The timeliness of collection and depth of scraping will be key to keeping dirt content below 60 percent and moisture content below 20 percent, he said. "Paving the pens with a crushed ash or a fly-ash material (from coal-fired power plants) will end up returning to you in the form of heating value û big time," Auvermann said.

Partially composted manure from paved pens can have a heating value almost equivalent to that generated by burning Texas lignite coal, he said.

Feedyard owners should consider the process as "harvesting manure" rather than cleaning pens, Auvermann said. The ultimate goal is to have a hard, smooth, well-drained corral surface. Implementing good practices will pay at the bottom line, he said.

Conscientious manure harvesting can result in higher fuel and fertilizer values, reduced feed requirements for cattle, improved pen drainage, and reduced odor, dust and flies.

Brent Auvermann | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>