Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Iron in a jacket’ helps combat anaemia in Africa

25.05.2007
A new way of fortifying flour with iron helps combat anaemia in developing countries through food. Researchers from Wageningen University, Unilever and Akzo Nobel will be making this known in the authoritative scientific journal, The Lancet, this week. Together with colleagues from the Kenya Medical Research Institute, they elaborate on an earlier finding in which iron is piloted through the acid stomach ‘in a jacket’.

In developing countries, half of all young children suffer from anaemia, often as a result of iron-deficiency. The cause is a one-sided diet based mainly on grains. These contain phytates, substances which bind the nutrient iron from plant sources as insoluble salts. As the iron-binding phytates are not broken down in the gastrointestinal tract, the body absorbs only 5% of all the iron in plant food. The rest is excreted by the body.

Iron-deficiency can be combated relatively inexpensively by adding iron to foodstuffs. Maize and wheat are ideal for this; large population groups consume these types of flours in large quantities throughout the year. International efforts (including those of the World Health Organization and Unicef) to reinforce flour with iron are beginning to bear fruit. In 1990 only the United States and Canada reinforced their flour with iron; now 49 countries are doing the same, including Nigeria and South Africa, countries of influence in Africa.

In most countries fortification is by adding almost pure iron powder. This is prepared by treating iron oxides with hydrogen or carbon monoxide at high temperatures, or by a process in which iron is produced electrolytically from iron sulphate. The product is then ground into a very fine powder.

The researchers from Wageningen University and from Unilever suspected, however, that this iron powder would not be effective because it also binds with the phytates. So they used iron that Akzo Nobel had chemically ‘wrapped’ in an organic ‘jacket’ made of the compound EDTA. The iron-EDTA (chemical formula NaFeEDTA.3H2O) protects the iron, so that it is not able to bind with the phytates. The iron 'in a jacket' which is consumed with the food remains bound in the acid conditions in the stomach. It becomes available for absorption by the intestinal cells in less acid conditions, like that of the small intestine.

The researchers put this to the test by comparing electrolytically produced iron with iron in iron-EDTA in a so-called randomised placebo-controlled trial among 516 Kenyan schoolchildren. In this experiment, different groups of children were given porridge made from whole maize flour every day for a period of five months. Electrolytic iron was added to the flour for the first group in amounts according to the requirements of the South African government (56 mg/kg). A second group was given porridge made from flour with an equal amount of ‘jacketed’ iron (iron-EDTA). No iron was added to the flour of the third group of children.

At the end of the experiment, it appeared that fortification with iron-EDTA had reduced the occurrence of iron-deficiency anaemia by 89%, while the electrolytic iron had no effect at all on the prevention of anaemia. As expected, it appeared that the children with an iron deficiency, in particular, gained from the intervention; in contrast, the iron-EDTA had no effect on the children who already had sufficient iron reserves at the beginning of the experiment. The iron intervention did not lead to iron overload because the body regulates the absorption of iron in accordance with its requirements.

The researchers have come to the conclusion that iron-EDTA gives an improved iron status and that this in case of fortification of flours with high phytate contents, as is common in Africa and developing countries elsewhere, is to be preferred to electrolytic iron. It is expected that these findings will lead to amendments to national directives and legislation concerning food fortification in developing countries.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>