Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Iron in a jacket’ helps combat anaemia in Africa

25.05.2007
A new way of fortifying flour with iron helps combat anaemia in developing countries through food. Researchers from Wageningen University, Unilever and Akzo Nobel will be making this known in the authoritative scientific journal, The Lancet, this week. Together with colleagues from the Kenya Medical Research Institute, they elaborate on an earlier finding in which iron is piloted through the acid stomach ‘in a jacket’.

In developing countries, half of all young children suffer from anaemia, often as a result of iron-deficiency. The cause is a one-sided diet based mainly on grains. These contain phytates, substances which bind the nutrient iron from plant sources as insoluble salts. As the iron-binding phytates are not broken down in the gastrointestinal tract, the body absorbs only 5% of all the iron in plant food. The rest is excreted by the body.

Iron-deficiency can be combated relatively inexpensively by adding iron to foodstuffs. Maize and wheat are ideal for this; large population groups consume these types of flours in large quantities throughout the year. International efforts (including those of the World Health Organization and Unicef) to reinforce flour with iron are beginning to bear fruit. In 1990 only the United States and Canada reinforced their flour with iron; now 49 countries are doing the same, including Nigeria and South Africa, countries of influence in Africa.

In most countries fortification is by adding almost pure iron powder. This is prepared by treating iron oxides with hydrogen or carbon monoxide at high temperatures, or by a process in which iron is produced electrolytically from iron sulphate. The product is then ground into a very fine powder.

The researchers from Wageningen University and from Unilever suspected, however, that this iron powder would not be effective because it also binds with the phytates. So they used iron that Akzo Nobel had chemically ‘wrapped’ in an organic ‘jacket’ made of the compound EDTA. The iron-EDTA (chemical formula NaFeEDTA.3H2O) protects the iron, so that it is not able to bind with the phytates. The iron 'in a jacket' which is consumed with the food remains bound in the acid conditions in the stomach. It becomes available for absorption by the intestinal cells in less acid conditions, like that of the small intestine.

The researchers put this to the test by comparing electrolytically produced iron with iron in iron-EDTA in a so-called randomised placebo-controlled trial among 516 Kenyan schoolchildren. In this experiment, different groups of children were given porridge made from whole maize flour every day for a period of five months. Electrolytic iron was added to the flour for the first group in amounts according to the requirements of the South African government (56 mg/kg). A second group was given porridge made from flour with an equal amount of ‘jacketed’ iron (iron-EDTA). No iron was added to the flour of the third group of children.

At the end of the experiment, it appeared that fortification with iron-EDTA had reduced the occurrence of iron-deficiency anaemia by 89%, while the electrolytic iron had no effect at all on the prevention of anaemia. As expected, it appeared that the children with an iron deficiency, in particular, gained from the intervention; in contrast, the iron-EDTA had no effect on the children who already had sufficient iron reserves at the beginning of the experiment. The iron intervention did not lead to iron overload because the body regulates the absorption of iron in accordance with its requirements.

The researchers have come to the conclusion that iron-EDTA gives an improved iron status and that this in case of fortification of flours with high phytate contents, as is common in Africa and developing countries elsewhere, is to be preferred to electrolytic iron. It is expected that these findings will lead to amendments to national directives and legislation concerning food fortification in developing countries.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>