Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biorefinery building blocks

24.05.2007
Aston University is helping to optimise biomass use as a partner in a new €13 million European biorefinery project.

The BIOSYNERGY project, sponsored by the European Commission, aims to make biomass derived products cost competitive with fossil fuels by developing and designing innovative biorefinery concepts.

Despite rising petrol prices, using biomass to produce transportation fuels, and to a lesser extent energy, is still more expensive than using traditional petrochemical resources.

However, a biorefinery can scale-up production and efficiency while cutting costs by making multiple products and maximising the value of the feedstock. For example, a biorefinery could produce a number of high value chemicals, large volumes of liquid transport fuels and use the leftover energy to heat and power the plant. The chemicals boost profitability, transport fuels replace some of the fossil fuels currently on the market, and reusing excess heat and power cuts carbon emissions further.

Led by the Energy research Centre of the Netherlands (ECN), BIOSYNERGY comprises 17 academic and industrial partners from across Europe.

Hans Reith, BIOSYNERGY Coordinator based at ECN said: “BIOSYNERGY aims to achieve sound techno-economic process development of integrated production of chemicals, transportation fuels and energy, from lab-scale to pilot plant. This project will be instrumental in the future establishment of biorefineries that can produce bulk quantities of chemicals, fuels and energy from a wide range of biomass feedstocks.”

Researchers will use advanced fractionation and conversion processes for biomass and combine biochemical and thermochemical pathways to develop the most economical and environmentally sound solutions for large-scale bioenergy production.

“We’re developing concepts and carrying out supporting research to provide data to help implement a future biorefinery,” said Tony Bridgwater, Head of Aston University’s Bioenergy Research Group.

BIOSYNERGY will set-up pilot plants of the most promising technologies for a “bioethanol side-streams” biorefinery, in close collaboration with the lignocellulose-to-bioethanol pilot-plant of project partner Abengoa Bioenergy, currently under construction in Salamanca, Spain.

Aston University will lead work to identify the optimum biorefinery based biomass-to-product chains for a future European bio-based economy, test and characterise biomass and lignin in its fast pyrolysis reactors, and produce a BIOSYNERGY Road Show to communicate results.

Crystal Luxmore | alfa
Further information:
http://www.biosynergy.eu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>