Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new portable biosensor detects traces of contaminants in food more quickly and more cheaply

21.05.2007
Scientists at the Universitat Autònoma de Barcelona (UAB), in cooperation with the CSIC, have developed a new electro-chemical biosensor which detects the presence, in food, of very small amounts of atrazine –one of the most widely used herbicides in agriculture and which also has very long lasting effects on the environment- as well as antibiotics in food.

The biosensor is faster, more portable and economic than the expensive laboratory methods which are used to detect contaminants, while having a very similar sensitivity. The system has been tested successfully to detect pesticides in samples of drinking water and commercial orange juice, as well as to detect traces of antibiotics in cow’s milk.

The agricultural use of atrazine, and other herbicides based on a chemical substance called triazine, often causes contamination both of underground water and overground water. For this reason food safety agencies have established control measures to prevent these pesticides entering the food chain. Similarly, antibiotics used to treat bacterial infections in domestic animals, such as the case of sulphanilamides in cattle, and even those used to improve growth in farm animals, may contaminate food and be harmful for people. The European Community has established upper limits for the presence of traces of pesticides and antibiotics in food, but the control of these limits is carried out in laboratories with expensive, slow and bulky equipment.

The sensor developed by scientists at the UAB and the CSIC will allow the detection of doses of atrazine at levels of 0.006 micrograms per litre, much lower than the maximum concentrations allowed by European regulations (0.1 micrograms per litre), and this can be done more quickly and cheaply than is the case of the chromatographs which are used today in food safety laboratories. As regards the detection of antibiotics, the sensor has a sensitivity of 1 microgram per litre for whole milk, while the legislation allows a maximum of 100 micrograms per litre.

Due to the ease of use of this sensor and its portability, the technique can be used in situ for quantitative analysis of the presence of atrazine, as well as that of other herbicides, in food and water samples outside the laboratory. The sensor can be easily prepared by means of a process that can be extended on an industrial scale to allow the manufacture of large quantities at a very low cost, and may even be made for personal, disposable use .

The chemical mechanism to detect contaminants in a sample is very similar to that used by the immune system to identify a virus or bacteria in the body. The organism attacks an infection by generating antibodies which hook onto, for example, a specific type of virus. Hence the virus is identified and may be eliminated. In the case of the sensors, specific antibodies for atrazine have been used (in the case of

pesticides) and for sulphanilamide (in the case of identifying antibiotics). Once the antibodies hook onto the contaminating particles they are attracted to the surface of a transductor which converts the contact with the antibodies into electrical signals. By measuring these electric signals the device can determine the concentration of contaminants in the sample.

According to Isabel Pividori, researcher at the UAB Sensors and Biosensors Group and co-director of the study, “due to their characteristics, such as their ability to carry out measurements in the field, the biosensors are analytical tools which have numerous applications in the agro food industry, and can be used as an alarm for the rapid detection of ‘risk’ of contamination in practices based on Risk and Critical Control Point Analysis”.

The research has been undertaken jointly by the professor of the Department of Chemistry, Salvador Alegret and the doctoral student Emanuela Zacco, and has counted on the participation of the Applied Molecular Receptor Group at the Institute of Chemical and Environmental Research in (CSIC), headed by Maria Pilar Marco. The results have recently been published in the journals Analytical Chemistry and Biosensors and Bioelectronics.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>