Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new portable biosensor detects traces of contaminants in food more quickly and more cheaply

21.05.2007
Scientists at the Universitat Autònoma de Barcelona (UAB), in cooperation with the CSIC, have developed a new electro-chemical biosensor which detects the presence, in food, of very small amounts of atrazine –one of the most widely used herbicides in agriculture and which also has very long lasting effects on the environment- as well as antibiotics in food.

The biosensor is faster, more portable and economic than the expensive laboratory methods which are used to detect contaminants, while having a very similar sensitivity. The system has been tested successfully to detect pesticides in samples of drinking water and commercial orange juice, as well as to detect traces of antibiotics in cow’s milk.

The agricultural use of atrazine, and other herbicides based on a chemical substance called triazine, often causes contamination both of underground water and overground water. For this reason food safety agencies have established control measures to prevent these pesticides entering the food chain. Similarly, antibiotics used to treat bacterial infections in domestic animals, such as the case of sulphanilamides in cattle, and even those used to improve growth in farm animals, may contaminate food and be harmful for people. The European Community has established upper limits for the presence of traces of pesticides and antibiotics in food, but the control of these limits is carried out in laboratories with expensive, slow and bulky equipment.

The sensor developed by scientists at the UAB and the CSIC will allow the detection of doses of atrazine at levels of 0.006 micrograms per litre, much lower than the maximum concentrations allowed by European regulations (0.1 micrograms per litre), and this can be done more quickly and cheaply than is the case of the chromatographs which are used today in food safety laboratories. As regards the detection of antibiotics, the sensor has a sensitivity of 1 microgram per litre for whole milk, while the legislation allows a maximum of 100 micrograms per litre.

Due to the ease of use of this sensor and its portability, the technique can be used in situ for quantitative analysis of the presence of atrazine, as well as that of other herbicides, in food and water samples outside the laboratory. The sensor can be easily prepared by means of a process that can be extended on an industrial scale to allow the manufacture of large quantities at a very low cost, and may even be made for personal, disposable use .

The chemical mechanism to detect contaminants in a sample is very similar to that used by the immune system to identify a virus or bacteria in the body. The organism attacks an infection by generating antibodies which hook onto, for example, a specific type of virus. Hence the virus is identified and may be eliminated. In the case of the sensors, specific antibodies for atrazine have been used (in the case of

pesticides) and for sulphanilamide (in the case of identifying antibiotics). Once the antibodies hook onto the contaminating particles they are attracted to the surface of a transductor which converts the contact with the antibodies into electrical signals. By measuring these electric signals the device can determine the concentration of contaminants in the sample.

According to Isabel Pividori, researcher at the UAB Sensors and Biosensors Group and co-director of the study, “due to their characteristics, such as their ability to carry out measurements in the field, the biosensors are analytical tools which have numerous applications in the agro food industry, and can be used as an alarm for the rapid detection of ‘risk’ of contamination in practices based on Risk and Critical Control Point Analysis”.

The research has been undertaken jointly by the professor of the Department of Chemistry, Salvador Alegret and the doctoral student Emanuela Zacco, and has counted on the participation of the Applied Molecular Receptor Group at the Institute of Chemical and Environmental Research in (CSIC), headed by Maria Pilar Marco. The results have recently been published in the journals Analytical Chemistry and Biosensors and Bioelectronics.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>