Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research Says Boiling Broccoli Ruins Its Anti Cancer Properties

Researchers at the University of Warwick have found that the standard British cooking habit of boiling vegetables severely damages the anticancer properties of many Brassica vegetables such as broccoli, Brussel sprouts, cauliflower and green cabbage.

Past studies have shown that consumption of Brassica vegetables decreases the risk of cancer. This is because of the high concentration in Brassicas of substances known as glucosinolates which are metabolized to cancer preventive substances known as isothiocyanates. However before this research it was not known how the glucosinolates and isothiocyanates were influenced by storage and cooking of Brassica vegetables.

The researchers, Prof Paul Thornalley from Warwick Medical School at the University of Warwick and Dr Lijiang Song from the University of Warwick’s Department of Chemistry bought Brassica vegetables, (broccoli, Brussel sprouts, cauliflower and green cabbage) from a local store and transported them to the laboratory within 30 minutes of purchasing. The effect of cooking on the glucosinolate content of vegetables was then studied by investigating the effects of cooking by boiling, steaming, microwave cooking and stir-fry.

Boiling appeared to have a serious impact on the retention of those important glucosinolate within the vegetables. The loss of total glucosinolate content after boiling for 30 minutes was: broccoli 77%, Brussel sprouts 58%, cauliflower 75% and green cabbage 65%.

The effects of other cooking methods were investigated: steaming for 0–20 min, microwave cooking for 0–3 min and stir-fry cooking for 0–5 min. All three methods gave no significant loss of total glucosinolate analyte contents over these cooking periods.

Domestic storage of the vegetables at ambient temperature and in a domestic refrigerator showed no significant difference with only minor loss of glucosinolate levels over 7 days.

However the researchers found that storage of fresh vegetables at much lower temperatures such as -85 °C (much higher than for storage in a refrigerator at 4–8 °C) may cause significant loss of glucosinolates up to 33% by fracture of vegetable material during thawing.

The researchers found that preparation of Brassica vegetables had caused only minor reductions in glucosinolate except when they were shredded finely which showed a marked decline of glucosinolate levels with a loss of up to 75% over 6 hours after shredding.

Professor Thornalley said: "If you want to get the maximum benefit from your five portions-a-day vegetable consumption, if you are cooking your vegetables boiling is out. You need to consider stir frying steaming or micro-waving them."Broadcast quality TV footage on this story will be available from a Research-TV VNR available from APTN today Tuesday 15th March , 12:15-12:30 GMT details on how to obtain that footage are available from 024 76 574702.

Peter Dunn | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>