Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New knowledge improves rice quality

08.05.2007
Could help poor farmers boost income

A major international initiative is being launched to try to boost the income of the world’s millions of poor rice farmers and at the same time provide consumers with more nutritious, better tasting food.

New scientific knowledge is allowing rice researchers to develop better quality rice varieties that could fetch a higher price from consumers, especially increasingly affluent rice consumers in Asia.

The main aim of the new International Network for Quality Rice is to help rice breeders around the world develop varieties with improved quality traits such as better taste, aroma, and cooking characteristics as well as higher levels of nutrition. Once provided to farmers, the new varieties are expected to command a higher price among consumers, especially those in Asia, who, as they become increasingly affluent, are seeking – and paying for – better quality food.

"Much of this research would not have been possible ten years ago because we simply did not have the knowledge or the understanding of quality that we do now," Robert S. Zeigler, the director general of the Philippines-based International Rice Research Institute, said. "It really is a very exciting time to be involved in such research, especially because we can take the new scientific knowledge generated by activities such as the recent sequencing of the rice genome, and use it to improve the lives of the poor by providing either better quality food or increased income."

The quality rice network – which was formed electronically in 2006 – met for the first time last month during a three-day workshop entitled "Clearing Old Hurdles with New Science: Improving Rice Grain Quality" at IRRI. The event attracted 71 cereal chemists and other experts from more than 20 nations.

"It’s very clear from the great response we got to the workshop that rice quality is becoming a very hot topic in rice research almost everywhere," the convener and head of IRRI’s Grain Quality, Nutrition, and Postharvest Center, Melissa Fitzgerald, said. "Many of the issues we discussed may not have even been considered a few years ago, but, with the recent advances in molecular biology and exciting new areas such as metabolomics (the whole-genome assessment of metabolites), we can do things now that we could only dream about before."

During the workshop, the latest research was presented in several new areas, including

- Breeding for better quality and genetically mapping specific quality traits in rice such as taste and aroma.

- The cooking and eating qualities of rice and how to measure sensory qualities more accurately.

- The role of important substances such as starch and amylose in cooking rice and how they are measured.

"IRRI is very fortunate to have a strong foundation of previous rice quality research to build on," Dr. Fitzgerald said. "We needed that to ensure we made the right decisions as we move into a whole new era of rice quality research."

For many years, rice breeders have focused on developing varieties that would boost production and provide some insect and weed resistance to help farmers reduce their use of pesticides; quality was not a high priority. However, major new advances in rice research and Asia’s continuing economic development have created important new opportunities.

"These are the two key changes driving the whole process and making this research area so exciting," Dr. Zeigler said. "If we can link these two things together – our new and improved knowledge and understanding of rice quality with affluent-consumer desires for better rice – then it’s possible we can also help poor farmers improve their lives.

"This would be an outstanding example of using the latest in science to improve the lives of the poor, while satisfying the desires of the affluent," he added.

Duncan Macintosh | EurekAlert!
Further information:
http://www.cgiar.org
http://www.knowledgebank.irri.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>