Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pre-empting a horticultural and food security disaster in eastern Africa

04.05.2007
Scientists move in to tackle the invasion of leafminer flies into the region

Scientists from the Nairobi-headquartered icipe, African Insect Science for Food and Health, the Kenya Agricultural Research Institute (KARI) and the International Potato Centre (CIP), Peru, with funding from BMZ, Germany, have joined forces to control the invasive horticultural pests of the genus Liriomyza, in eastern Africa.

Leafminer flies, as these pests are commonly known, cause crop damage in their adult and larval stages. The females puncture the plant leaves and in some instances the fruits with their ovipositors. The flies mainly use these punctures for feeding, but 10% of the time, they lay eggs in them, which then develop into larvae. A heavy attack of leafminers leads to large-scale destruction of leaf tissue, shrivelling of the leaves and eventually, the complete defoliation of the entire plant. More importantly, the presence of leafminer larvae on export produce is of quarantine relevance in the European Union markets.

Liriomyza leafminers were restricted to the New World until the 1970s but have since then been spreading to other parts of the world. In eastern Africa, three polyphagous species, L. huidobrensis, L. sativae and L. trifoli, have been recorded on French and runner beans, snow and sugar snap peas, okra, aubergine, passion fruit and various species of cut flowers.

A significant area of concern is that in South America and Southeast Asia, L. huidobrensis has been known to attack and damage potato crops to crisis levels. Even though no attacks have been noted on this crop in eastern Africa, it is important to pre-empt such a possibility, which would be catastrophic as potatoes provide a fallback in bad maize years, preventing serious famines.

Overall, if not contained, the leafminer problem in East Africa would threaten the livelihoods of the region’s small-scale farmers, who produce 80% of vegetables for the local and export markets. Leafminers easily develop resistance to synthetic pesticides, thus necessitating the use of the newest plant protection materials, which are often out of the reach of such farmers. Synthetic chemicals also have an adverse effect on the natural enemies, which are important in controlling the leafminers. Moreover, while only L. huidobrensis is a listed quarantine pest in the EU, there is currently no practicable method for inspectors to distinguish between leafminer larvae on import produce. As a result, whole consignments are usually rejected when any leafminers are detected.

The work by icipe, KARI and CIP will build on the extensive studies on leafminers already done in the developed countries. Further, it will address existing research gaps towards environmentally-friendly, affordable and sustainable management of leaf miners in eastern Africa.

One of the priority areas will be to improve biocontrol of leafminers. The researchers will also look at other control techniques, which would be harmless to the natural enemies such as trap crops and biopesticides.

The technologies generated through this study will be of benefit to small, medium to large-scale farming units. In addition, national research and extension services, non-governmental organisations and the private sector enterprises could use the results for producing and marketing biopes.

Liz Nganga | alfa
Further information:
http://www.icipe.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>