Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic research takes flight

04.05.2007
Robotic planes that help farmers monitor animal health, crop conditions and water use are flying out of the University of Nottingham’s newest overseas research centre.

The Geospatial Research Centre has been officially launched at its base in Christchurch, New Zealand, this month. The Centre is a joint venture between the Universities of Nottingham and Canterbury, and the Canterbury Development Corporation, and carries out research and consultancy in the fields of positioning and orientation, with particular expertise in sensor integration, image analysis, data visualisation and electronics. It bridges the gap between n academia and industry, spinning out a range of innovative new technologies to be used in areas including agriculture and forestry, environmental monitoring and management, transport and health.

Geospatial research covers the gathering and interpretation of geographic information through the use of new technologies such as satellite navigation devices. The unmanned robotic planes currently being developed could potentially be used in a range of applications from farming to search and rescue to atmospheric monitoring.

The director of the new centre is Dr David Park, formerly of the University of Nottingham’s Institute of Engineering Surveying and Space Geodesy (IESSG), moved to Christchurch with four colleagues in 2006. The new Geospatial Research Centre was established in the University of Canterbury’s New Zealand ICT Innovation Institute — part of the College of Engineering.

The New Zealand government has given NZ$2m, with regional funding providing an extra NZ$900,000. It is thought the centre will be self-supporting by the end of 2009 — with funding from industry, project-related research grants, IP licensing and PhD supervision fees.

By being based on New Zealand’s South Island, researchers can take advantage of the huge range of habitats available at close hand.

“The range of physical environments that are available for research on the South Island within a few hours of Christchurch in terms of oceans , rain forest, glaciers, mountains, cliffs and agriculture of all types, makes it all very exciting,” said Dr Park. ”We can work in partnership with domain specific users to develop technologies for a particular application or market and can then very easily test them in the real world, in realistic conditions.”

The centre is already trailing an unmanned aircraft fitted with a Global Positioning System (GPS) receiver, imaging systems and communications facilities. Technology on board collates and feeds information to a central computer.

“The idea is to develop a model that would retail for about NZ$10,000 [£3,500] and which would be no more than a couple of metres in size and packed with electronics and sensor devices,” added Dr Park.

Other innovative research being carried out in the centre includes the development of miniaturised, low cost positioning sensors; exploring how the latest range of Digital Signal Processing hardware can be used for real time image analysis; and the evaluation of new communications and positioning systems that do not require any traditional electronic hardware.

Representatives from the university travelled to New Zealand for the centre’s official launch, including Professor of Geodesy Alan Dodson and Professor Terry Moore.

Professor Moore, Director of the IESSG, said: “We are delighted to join our colleagues in New Zealand for the launch of this exciting new venture. The GRC will offer great opportunities for collaborative research between the IESSG and the GRC and with a broad range of new potential partners in New Zealand. Through the GRC we will encourage staff and student exchange between Nottingham and Christchurch.”

Nottingham is the UK's most pioneering university for the internationalisation of education and its strategy and approach has been rewarded with the Queen's Award for Enterprise: International Trade 2006. Few other universities in the world can boast the scale of overseas investment that has been undertaken by The University of Nottingham. It was the first UK university to establish a campus overseas, in Malaysia, and made history again when it became the world's first university to be granted a licence to open an overseas campus on mainland China, which was officially opened in Ningbo in February 2006.

The new Geospatial Research Centre represents an alternative element in the University's internationalisation strategy. Unlike its overseas campuses, the new facility will offer no formal teaching, with a small amount of PhD supervision and will concentrate instead on the commercialisation of its world-changing research.

For more information on the Geospatial Research Centre visit www.grcnz.com

Emma Thorne | alfa
Further information:
http://www.grcnz.com
http://www.nottingham.ac.uk/public-affairs/press-releases/index.phtml?menu=pressreleases&code=ROBO-82/07&create_date=03-may-2007

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>